Regression analysis: A new methodology to compare equations
Main Article Content
Abstract
When working on modeling with regression analysis, several models are generally tested in order to select a more accurate equation after fitting in relation to some statistical tests. The decision becomes more difficult when the results of the statistical tests are similar because they are usually tests by equation, meaning that they provide statistics for each equation separately. A methodology which classifies them according to the averages of estimates in relation to the average of actual data does not exist because the averages of estimates and actual data are the same. This work proposes a methodology where the average sum of squares of the fitted equations and the average sum of squares of the real data are used. Thus, it becomes possible to apply a mean comparison test to group similar equations and separate different equations. For this work, 105 trees of Eucalyptus spp. clones were used, rigorously cubed by the Smalian method at seven and a half years of age in their second rotation, in a forest experiment located in a semi-arid zone of Pernambuco, Brazil. In turn, five linear volumetric models and one non-linear model were fitted and comparisons among equations were performed using several statistical tests usually employed in forest modeling. The Tukey, Duncan, Dunnett and Scott-Knott tests were used to test the proposed methodology, which, in addition to presenting similar results to the traditional tests, enabled grouping similar equations, and having the real volumes of the trees as the control.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
References
1. Akaike, H. A new look at statistical model identification. IEEE Transactions on Automatic Control 19 (6), 716-723 (1974).
2. Bozdogan, H. Model selection and Akaike’s information criterion (AIC): the general theory and its analytical extensions. Psychometrika 52, 345–370 (1987). DOI: https://doi.org/10.1007/BF02294361
3. Cysneiros, V. C.; Pelissari, A. L.; Machado, S. A.; Filho, A. F. & Souza, L. Modelos genéricos e específicos para a estimativa do volume comercial em uma floresta sob concessão na Amazônia, Sci. For. 45 (114), 295-304 (2017). DOI: https://doi.org/10.18671/scifor.v45n114.06
4. Duncan, D. B. Multiple range and multiple F tests, Biometrics 11, 1-42 (1955). DOI: 10.2307/3001478
5. Dunnet, C. W. New tables for multiple comparisons with control, Biometrics 40, 482-491 (1964). DOI:
https://doi.org/10.2307/2528490
6. Fahrmeir, L.; Kneib, T.; Lang, S. & Marx, B. Regression, models, methods and applications (Springer-Verlag, 2013).
7. Figueiredo-Filho, D.; Nunes, F.; Rocha, E. C.; Santos, M. L.; Batista, M. & Silva-Júnior, J. A. O que fazer e não fazer com a regressão: pressupostos e aplicações do modelo linear de mínimos quadrados ordinários (MQO). Revista Política Hoje 20 (1), 44-99 (2011).
8. Furnival, G. M. An index for comparing equation used in construction of volume table. Forest Science 7 (4), 337-341 (1961). DOI: https://doi.org/10.1093/forestscience/7.4.337
9. Gouveia, J. F.; Silva, J. A.A.; Ferreira, R. L. C.; Gadelha, F. H. L. & Lima-Filho, L. M. A. Modelos volumétricos mistos em clones de Eucalyptus no polo gesseiro do Araripe, Pernambuco. Floresta 45 (3), 587-598 (2015). DOI: https://doi.org/10.5380/rf.v45i3.36844
10. Guendehou, G. H. S.; Lehtonen, A.; Moudachirou, M.; Mäkipää, R. & Sinsin, B. Volume models of selected tropical tree species in West Africa. Southern Forests: Journal of Forest Science 74 (2), 77-88 (2012). DOI:https://doi.org/10.2989/20702620.2012.701432
11. Marquardt, D. W. & Snee, R. D. Test statistics for mixture models. Technometrics 16 (4), 533-537 (1974). DOI: https://doi.org/10.2307/1267604
12. Mehtätalo, L. & Lappi, J. Biometry for forestry and environmental data with examples in R (CRC Press, 2020).
13. Montgomery, D. C.; Peck, E. A. & Vining, G. G. Introduction to linear regression analysis (John Wiley & Sons Pte. Ltd., 2013).
14. Pimentel-Gomes, F. Curso de Estatística Experimental (Livraria Nobel, 4a Ed., 1970).
15. Santos, K. N. F.; Rode, R.; Andrade, D. F. C.; Correa, K. S. & Lopes, L. S. S. Ajuste de equações volumétricas e redes neurais artificiais na estimativa do volume de tauari na floresta nacional do Tapajós. Agroecossistemas 10 (1), 1 – 17 (2018). DOI: https://doi.org/10.18542/ragros.v10i1.5130
16. Schlaegel, B. D. Testing, reporting, and using biomass estimation models. In: Proceedings of 1981, Southern Forest Biomass Workshop, Clemson University, Clemson, South Carolina. 95-112 (1981).
17. Schneider, P. R.; Schneider, P. S. P. & Souza, C. A. M. Análise de regressão aplicada à Engenharia Florestal (FACOS-UFSM, 2 ed., 2009).
18. Schwarz, G. Estimating the dimension of a model. The Annals of Statistics 6 (2), 461-464 (1978). http://www.jstor.org/stable/2958889
19. Scott, A. J. & Knott, M. A. A cluster analysis method for grouping means in the analysis of variance. Biometrics 30, 507-5042 (1974). DOI: https://doi.org/10.2307/2529204
20. Segel, L. A. & Edelstein, L. A premier on Mathematical models in Biology (SIAM-Society for Industrial and Applied Mathematics, 2013).
21. Silva, J. A. A. & Ferreira, R. L. C. Influences of determined and estimated dendrometric variables on the precision of volumetric modelling. Journal of Forest Science 67 (12), 553–561 (2021). DOI: https://doi.org/10.17221/105/2021-JFS
22. Silva, J. A. A. & Silva, A, I. P. Estatística experimental aplicada à ciência florestal. (Imprensa Universitária da UFRPE, 2 ed., 1995).
23. Snedecor, G. W. Calculation and interpretation of analysis of variance and covariance. Journal of Farm Economics 16 (4), 728-730 (1934). DOI: https://doi.org/10.1037/13308-000
24. Spurr, S. H. Forest inventory (New York: Ronald Press, 1952).
25. Tukey, J. W. Comparing individual means in the analysis of variance. Biometrics 5, 99-114 (1949). DOI: https://doi.org/10.2307/3001913
26. Viana, H.; Fernandes, P. & Aranha, J. Equações para estimar a biomassa aérea das principais lenhosas arbustivas no Norte e Centro do País. Silva Lusitana, 99-109 (2013).
27. Vanclay, J.K. & Skovsgaard, J. P. Evaluating forest growth models. Ecological Modelling 98, 1-12 (1997). DOI: https://doi.org/10.1016/S0304-3800(96)01932-1
28. Zhang, X.; Duan, A.; Zhang, J. & Xiang, C. Estimating tree height-diameter models with the Bayesian method. Hindawi Publishing Corporation, Scientific World Journal (Article ID 683691, 9 p., 2014). DOI: https://doi.org/10.1155/2014/683691