Optimal designs in plant breeding experiments: a simulation study using wheat pedigree matrix

Main Article Content

Paula Ribeiro Santos
https://orcid.org/0000-0002-1885-8916
Renata Alcarde Sermarini
https://orcid.org/0000-0001-6425-9626

Abstract

Plant breeding programs involve the selection of new superior lines. However, for a large number of test lines, there are several limitations in the use of certain designs. Therefore, the success of these programs depends on an adequate experimental design that allows obtaining accurate estimates of genetic effects, increasing the efficiency of the experiment and controlling experimental variability. In addition, considering the dependence between genetic effects is desirable to ensure the validity and generalization of results, avoiding biased estimates and incorrect interpretations. To this end, using partially replicated designs (p-rep), in which a percentage, p, of test lines are replicated and the others not, can be a good option. Thus, a simulation study was conducted to evaluate designs for early phase wheat breading experiments according to the optimization criterion C, considering the dependence or independence between test lines, comparing them in relation to the perceived genetic gain and, consequently, the quality of the material selection, for a given experimental area and for p = 20%, for different genetic variance values. It could be concluded that the differences between designs are small, and that they are more affected by the magnitude of the genetic variance assumed for data.

Article Details

How to Cite
Ribeiro Santos, P., & Alcarde Sermarini, R. . (2025). Optimal designs in plant breeding experiments: a simulation study using wheat pedigree matrix. Brazilian Journal of Biometrics, 43(3), e-43759. https://doi.org/10.28951/bjb.v43i3.759
Section
Articles

References

1. Bates, D. & Vazquez, A. I. pedigreemm: Pedigree-based mixed-effects models R package version 0.3-3 (2014). https://CRAN.R-project.org/package=pedigreemm.

2. Bueno Filho, J. S. S. & Gilmour, S. G. Block designs for random treatment effects. Journal of Statistical Planning and Inference 137, 1446–1451 (2007). https://doi.org/10.1016/j.jspi.2006.02.002

3. Bueno Filho, J. S. S. & Gilmour, S. G. On the Design of Field Experiments with Correlated Treatment Effects. Biometrics 59, 375–381 (2003). https://doi.org/10.1007/s13253-014-0191-0

4. Butler, D. G., Smith, A. B. & Cullis, B. R. On the Design of Field Experiments with Correlated Treatment Effects. Journal of Agricultural, Biological, and Environmental Statistics 19, 541–557 (2014). https://doi.org/10.1007/s13253-014-0191-0

5. Butler, D. odw: Generate optimal experimental designs R package version 2.1.3 (2022).

6. CIMMYT. https://www.cimmyt.org/, accessed 21 April of 2021 (2021).

7. Clarke, G. P. Y. & Stefanova, K. T. Optimal Design for Early-Generation Plant-Breeding Trials with Unreplicated or Partially Replicated Test Lines. Australian & New Zeland Journal of Statistics 53, 461–480 (2011). http://dx.doi.org/10.1111/j.1467-842X.2011.00642.x

8. Cullis, B. R., Smith, A. B., Cocks, N. A. & Butler, D. G. The Design of Early-Stage Plant Breeding Trials Using Genetic Relatedness. Journal of Agricultural, Biological, and Environmental Statistics 24, 553–578 (2020). https://doi.org/10.1007/s13253-020-00403-5

9. Cullis, B. R., Smith, A. B. & Coombes, N. E. On the Design of Early Generation Variety Trials With Correlated Data. Journal of Agricultural, Biological, and Environmental Statistics 11, 381–392 (2006). https://doi.org/10.1198/108571106X154443

10. Dos Santos, D. P. Delineamentos ótimos para experimentos multi-ambientais de melhoramento genético de plantas Tese de doutorado. PhD thesis (Universidade de São Paulo, São Paulo, Brasil, 2023).

11. Dos Santos, D. P., Sermarini, R. A., dos Santos, A. & Demétrio, C. G. B. Optimal Designs in Plant Breeding Experiments: A Simulation Study Comparing Grid-Plot and Partially Replicated (p-Rep) Design. Sugar Tech 26, 387–395. ISSN: 0974-0740. http://www.journals.cambridge. org/abstract{_}S0021859606006319 (2024).

12. Federer, W. T. Augmented split block experiment design. Agronomy Journal 97, 578–586 (2005). https://doi.org/10.2134/agronj2005.0578

13. Federer, W. T. Construction and analysis of an augmented lattice square design. Biometrical journal 44, 251–257 (2002). https://doi.org/10.1002/1521-4036(200203)44:2%3C251::AID-BIMJ251%3E3.0.CO;2-N

14. Federer, W. T. & Crossa, J. On the design and analysis of field experiments (2001).

15. Federer, W. T., Nair, R. C. & Raghavarao, D. Some augmented row-column designs. Biometrics 31, 361–373 (1975). https://doi.org/10.2307/2529426

16. Federer, W. T. & Raghavarao, D. On augmented designs. Biometrics 31, 29–35 (1975). https://doi.org/10.2307/2529707

17. Federer, W. T. Augmented (or hoonuiaku) designs. Biometrics Unit Technical Reports 55, 191–208 (1956).

18. Federer, W. Augmented designs with one-way elimination of heterogeneity. Biometrics 17, 447–473 (1961). https://doi.org/10.2307/2527837

19. Gilmour, A. R., Cullis, B. R. & Verbyla, A. P. Accounting forNatural and Extraneous Variation in the Analysis of Field Experiments. Journal ofAgricultural, Biological, and Environmental Statistics 2, 269–293 (1997). https://doi.org/10.2307/1400446

20. Goes, A. L. Delineamentos ótimos para experimentos com cana-de-açúcar Dissertação de Mestrado (Universidade de São Paulo, Piracicaba, 2020), 44.

21. Henderson, C. R. A Simple Method for Computing the Inverse of a Numerator Relationship Matrix Used in Prediction of Breeding Values. Biometrics 32, 69–83 (1976). https://doi.org/10.2307/2529339

22. Hooks, T., Marx, D., Kachman, S. & Pedersen, J. Optimality Criteria for Models with Random Effects. Revista Colombiana de Estadística 32, 17–31 (2009).

23. Kempton, R. A. The design and analysis of unreplicated field trials.Vorträge für Pflanzenzüchtung 7, 219–242 (1984).

24. Lin, C. S. & Poushinsky, G. A modified augmented design for an early stage of plant selection involving a large number of test lines without replication. Biometrics 39, 553–561 (1983). https://doi.org/10.2307/2531083

25. Lin, C.-S. & Poushinsky, G. A modified augmented design (type 2) for rectangular plots. Canadian Journal of Plant Science 65, 743–749. ISSN: 0008-4220 (1985). http://pubs.aic.ca/doi/abs/10. 4141/cjps85-094

26. Moehring, J., Williams, E. R. & Piepho, H.-P. Efficiency of augmented p-rep designs in multi-environmental trials. Theoretical and Applied Genetics 127, 1049–1060 (2014). https://doi.org/10.1007/s00122-014-2278-y

27. Müller, B. U., Schützenmeister, A. & Piepho, H. P. Arrangement of check plots in augmented block designs when spatial analysis is used. Plant Breeding 6, 581–589 (2010). http://dx.doi.org/10.1111/j.1439-0523.2010.01803.x

28. Perez-Rodriguez, P. lme4GS: Lme4 for Genomic Selection R package version 0.1 (2021).

29. Piepho, H.-P. & Williams, E. R. Augmented Row–Column Designs for a Small Number of Checks. Agronomy Journal 108 (2016). https://doi.org/10.2134/agronj2016.06.0325

30. R Core Team. R: A Language and Environment for Statistical Computing R Foundation for Statistical Computing (Vienna, Austria, 2021). https://www.R-project.org/.

31. Santos, A. Design and analysis of sugarcane breeding experiments: a case study PhD thesis (Universidade de São Paulo, Piracicaba, 2017), 175.

32. Sermarini, R. A., Brien, C., Demétrio, C. G. B. & Santos, A. Impact on genetic gain fromusing misspecified statistical models in generating p-rep designs for early generation plant-breeding experiments. Crop Science, 1–13 (2020). https://doi.org/10.1002/csc2.20257

33. Shah, K. R. & Sinha, B. K. Theory of Optimal Designs (Springer-Verlag Berlin Heidelberg, Germany, 1989). https://doi.org/10.1007/978-1-4612-3662-7

34. Smith, A. B., Lim, P. & Cullis, B. R. The design and analysis of multi-phase plant breeding experiments. The Journal of Agricultural Science 144, 393. ISSN: 0021-8596. http://www.journals.cambridge.org/abstract{_}S0021859606006319 (2006).

35. The VSNi Team. asreml: Fits Linear Mixed Models using REML R package version 4.2.0.276 (2023). www.vsni.co.uk.

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 11 12 13 14 > >> 

You may also start an advanced similarity search for this article.