Survival analysis of critically ill patients with cancer: use of semiparametric (transformation models) under a hierarchical Bayesian approach
Main Article Content
Abstract
Survival medical data in presence of covariates and censored data usually are analyzed assuming non- parametric or parametric regression modeling approaches as the popular proportional hazards models, the proportional odds models and the accelerated failure time models. In medical studies, it is usual the use of the popular proportional hazards models introduced by Cox, 1972 in the data analysis. Maximum likelihood estimation methods assuming the partial likelihood function introduced by Cox, 1975 are used to get the inferences of interest. In many applications, the assumption of proportional hazards could be non-verified which makes the use of the Cox model unfeasible. In this way, the use of semiparametric or transformation models recently introduced in the literature could be a good alternative in the analysis of lifetime data in presence of censoring and covariates. This class of models generalizes the popular class of proportional hazards models proposed by Cox, 1972 without the need to assume a parametric probability distribution for the survival times. In this study, we present a hierarchical Bayesian analysis considering semiparametric models to a data set consisting of the survival times of cancer patients admitted to the intensive treatment unit of the INCA health institute (Instituto Nacional de Câncer - INCA) in Rio de Janeiro, Brazil. The posterior summaries of interest are obtained using existing MCMC (Markov Chain Monte Carlo) simulation methods.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
References
[1] Abramowitz, M. & Stegun, I.A. Handbook of mathematical functions with formulas, graphs, and mathematical tables. US Government printing office 39, (1968).
[2] Achcar, J. A. & Barili, E. Semiparametric transformation model in presence of cure fraction: a hierarchical Bayesian approach assuming the unknown hazards as latent factors. Statistical Methods & Applications 33, 1–24 (2023). https://doi.org/10.1007/s10260-023-00734-w
[3] Achcar, J. A., Barili, E. & Martinez, E. Z. Semiparametric transformation model: A hierarchical Bayesian approach. Model Assisted Statistics and Applications 18, 3, 245–256 (2023). https://doi.org/10.3233/MAS-221408
[4] Achcar, J.A. & Barili, E. Multivariate lifetime data in presence of censoring and covariates: Use of semiparametric models under a Bayesian approach. Communications in Statistics-Theory and Methods 33, 1–30 (2024). https://doi.org/10.1080/03610926.2024.2400163
[5] Achcar, J. A., Ramos, P.L. & Martinez, E. Z. Some computational aspects to find accurate estimates for the parameters of the generalized gamma distribution. Pesquisa Operacional 37, 2, 365-385 (2017). https://doi.org/10.1590/0101-7438.2017.037.02.0365
[6] Armstrong, T. B.; Kolesar, M. & Plagborg-Moller, M. Robust empirical Bayes confidence intervals, Econometrica 90, 6, 2567-2602 (2022). https://doi.org/10.3982/ECTA18597
[7] Bennett, S. Analysis of survival data by the proportional odds model. Statistics in Medicine 2, 2, 273–277 (1983). https://doi.org/10.1002/sim.4780020223
[8] Bradburn, M. J., Clark, T. G., Love, S. B. & Altman, D. G. Survival analysis part II: multivariate data analysis–an introduction to concepts and methods. British Journal of Cancer 89, 3, 431–436 (2003). https://doi.org/10.1038/sj.bjc.6601119
[9] Carlin, B.P. & Louis, T.A. Bayes and Empirical Bayes Methods for Data Analysis. 2nd Edition Chapman & Hall (2000). https://doi.org/10.1023/A:1018577817064
[10] Carvalho, M. S., Andreozzi, V. L., Codeço, C. T., Campos, D. P., Barbosa, M. T. S. & Shimakura, S. E. Análise de Sobrevivência: teoria e aplicações em saúde. SciELO-Editora FIOCRUZ (2019). https://doi.org/10.7476/9788575413029
[11] Chen, C.-M. & Lu, T.-F. C. Marginal analysis of multivariate failure time data with a surviving fraction based on semiparametric transformation cure models. Computational Statistics & Data Analysis 56, 1, 645–655 (2012). https://doi.org/10.1016/j.csda.2011.09.013
[12] Chen, K., Jin, Z. & Ying, Z. Semiparametric analysis of transformation models with censored data. Biometrika 89, 3, 659–668 (2002). https://doi.org/10.1093/biomet/89.3.659
[13] Chib, S. & Greenberg, E. Understanding the metropolis-hastings algorithm. The American Statistician 49, 4, 327–335 (1995). https://doi.org/10.2307/2684568
[14] Cox, D. R. Partial likelihood. Biometrika, 62, 2, 269–276 (1975).
[15] Cox, D. R. Regression models and life-tables. Journal of the Royal Statistical Society: Series B (Methodological) 34, 2, 187–202 (1972).
[16] Cox, D. R. & Snell, E. J. A general definition of residuals. Journal of the Royal Statistical Society: Series B (Methodological), 30, 2, 248–265 (1968). https://www.jstor.org/stable/2984505
[17] Cox, D. R. & Oakes, D. Analysis of survival data. Chapman and Hall, New York (1984).
[18] Demarqui, F. N., Mayrink, V. D. & Ghosh, S. K. An Unified Semiparametric Approach to Model Lifetime Data with Crossing Survival Curves. arXiv preprint arXiv:1910.04475 (2019). https://doi.org/10.48550/arXiv.1910.04475
[19] Efron, B. Empirical Bayes: Concepts and methods. In: Handbook of Bayesian, Fiducial, and Frequentist Inference. Chapman and Hall/CRC 8-34 (2024).
[20] Gao, F., Zeng, D. & Lin, D.-Y. Semiparametric regression analysis of interval-censored data with informative dropout. Biometrics 74, 4, 1213–1222 (2018). https://doi.org/10.1111/biom.12911
[21] Gelfand, A. E. & Smith, A. F. Sampling-based approaches to calculating marginal densities. Journal of the American Statistical Association 85, 410, 398–409 (1990). https://doi.org/10.1080/01621459.1990.10476213
[22] Gelman, A., Carlin, J. B., Stern, H. S. & Rubin, D. B. Bayesian data analysis Chapman and Hall/CRC (2004).
[23] Gelman, A. & Rubin, D. B. Inference from iterative simulation using multiple sequences. Statistical Science 7, 4, 457–472 (1992). https://www.jstor.org/stable/2246093
[24] Grambsch, P. M. & Therneau, T. M. Proportional hazards tests and diagnostics based on weighted residuals. Biometrika 81, 3, 515–526 (1994). https://doi.org/10.1093/biomet/81.3.515
[25] Kalbfleisch, J. D. & Prentice, R. L. The statistical analysis of failure time data. John Wiley & Sons (2002).
[26] Kaplan, E. L. & Meier, P. Nonparametric estimation from incomplete observations. Journal of the American Statistical Association 53, 282, 457–481 (1958). https://doi.org/10.2307/2281868
[27] Klein, J. P. & Moeschberger, M. L. Survival analysis: Techniques for censored and truncated data. Springer-Verlag, New York (1997). https://doi.org/10.1007/b97377
[28] Lawless, J. F. Statistical models and methods for lifetime data. New York: Wiley (1982).
[29] Li, J., Yu, T., Lv, J. & Lee, M.-L. T. Semiparametric model averaging prediction for lifetime data via hazards regression. Journal of the Royal Statistical Society Series C: Applied Statistics 70, 5, 1187–1209 (2021). https://doi.org/10.1111/rssc.12502
[30] Martinez, E. Z. & Achcar, J. A. Trends in epidemiology in the 21st century: time to adopt Bayesian methods. Cadernos de Saúde Pública 30, 4, 703–714 (2014). https://doi.org/10.1590/0102-311x00144013
[31] Race, J. A. & Pennell, M. L. Semi-parametric survival analysis via Dirichlet process mixtures of the First Hitting Time model. Lifetime Data Analysis 27, 177–194 (2021). https://doi.org/10.1007/s10985-020-09514-0
[32] Ramos, P. L., Jerez-Lillo, N., Segovia, F. A., Egbon, O. A. & Louzada, F. Power-law distribution in pieces: a semi-parametric approach with change point detection. Statistics and Computing 34, 1, 16 (2024). https://doi.org/10.1007/s11222-023-10336-x
[33] Schoenfeld, D. Partial residuals for the proportional hazards regression model. Biometrika 69, 1, 239–241 (1982). https://doi.org/10.2307/2335876
[34] Soares, M., Carvalho, M. S., Salluh, J. I., Ferreira, C. G., Luiz, R. R., Rocco, J. R. & Spector, N. Effect of age on survival of critically ill patients with cancer. Critical Care Medicine 24, 24 715–721 (2006). https://doi.org/10.1097/01.ccm.0000201883.05900.3f
[35] Spiegelhalter, D. J., Best, N. G., Carlin, B. P. & Van Der Linde, A. Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society Series B: Statistical Methodology 64, 4, 583–639 (2002). https://doi.org/10.1111/1467-9868.00353
[36] Spiegelhalter, D. J., Thomas, A., Best, N. & Lunn, D. WinBUGS version 1.4 user manual. MRC Biostatistics Unit, Cambridge. 54 (2003). URL http://www. mrc-bsu. cam. ac. uk/bugs
[37] Sun, J. & Sun, L. Semiparametric linear transformation models for current status data. Canadian Journal of Statistics 33, 1, 85–96 (2005). https://doi.org/10.1002/cjs.5540330107
[38] Yang, L. & Niu, X.-F. Semi-Parametric Models for Longitudinal Data Analysis. Journal of Finances Economics 9, 93–105 (2021). DOI: 10.12691/jfe-9-3-1
[39] Yang, S. & Prentice, R. Semiparametric analysis of short-term and long-term hazard ratios with two-sample survival data. Biometrika 92, 1, 1–17 (2005). https://doi.org/10.1093/biomet/92.1.1
[40] Zeng, D. & Lin, D. Semiparametric transformation models with random effects for joint analysis of recurrent and terminal events. Biometrics 65, 3, 746–752 (2009). https://doi.org/10.1111/j.1541-0420.2008.01126.x
[41] Zeng, D., Mao, L. & Lin, D. Maximum likelihood estimation for semiparametric transformation models with interval-censored data. Biometrika 103, 2, 253–271 (2016). https://doi.org/10.1093/biomet/asw013
[42] Zhou, Q., Hu, T. & Sun, J. A sieve semiparametric maximum likelihood approach for regression analysis of bivariate interval-censored failure time data. Journal of the American Statistical Association 112, 518, 664–672 (2017). https://doi.org/10.1080/01621459.2016.1158113