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Abstract
The application of molecular genetics in crop breeding has grown significantly, largely due to the suc-
cess of molecular breeding, which utilizes genotype-based approaches to achieve substantial genetic im-
provements with favorable cost-effectiveness. A successful molecular breeding strategy involves thorough
genotyping, enabling detailed genetic characterization of target germplasm, including genetic diversity
analysis, relationships, and population structure. Genotype-based methods, favored for their stability
and independence from environmental factors, are preferred over phenotype-based approaches. Genetic
diversity is assessed by comparing individual genotypes within and across populations, using statistical
methods to calculate genetic distances or similarities. This study focuses on establishing a unified frame-
work to compare and evaluate common similarity measures and their relation to distance metrics, specif-
ically in diploid inbred lines genotyped with biallelic SNPs, for use in genetic improvement efforts.

Keywords: Genetic similarity; Genetic distance; Deep genotyping; Molecular breeding.

1. Introduction
The application of molecular genetics in crop breeding has expanded considerably, driven by

the success of "molecular breeding" genotypebased approaches that offer substantial genetic gains
with a highly favorable cost-benefit ratio. A successful molecular breeding strategy begins with
comprehensive genotyping, allowing for indepth genetic characterization of the target germplasm.
This includes the evaluation of genetic diversity, the definition of genetic relationships, and the
assessment of population structure (Zambelli, 2023).
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Genetic diversity within and between plant populations can be analyzed through morphological
traits, biochemical markers such as allozymes, and genotyping. Among these, genotype based meth-
ods are preferred over phenotype based approaches due to their stability and the fact that they can be
detected in all tissues, irrespective of developmental stage and environmental conditions (Mondini
et al., 2009).

To measure genetic diversity, individual genotypes within and across populations are compared.
This process begins with constructing a genotype matrix through pairwise comparisons of samples,
followed by the calculation of genetic distances and similarities using various statistical methods
(Mohammadi & Prasanna, 2003; Patterson et al., 2006; Reif et al., 2005; Warburton & Crossa, 2002).

The inverse relationship between genetic distance and similarity is intuitive, but explaining it
in practical applications can be challenging. Selecting the appropriate statistical method requires a
nuanced understanding of the distinctions between these approaches and how they influence the
final outcomes.

This study aims to establish a cohesive framework for comparing and evaluating widely used
similarity and distance measures. It emphasizes the importance of accurately understanding the
relationships between these measures, particularly in the context of germplasm comprising diploid
inbred lines genotyped with biallelic SNPs.

2. Similarity and Distance Measures for Inbred Lines
Genetic diversity in an inbred line population genotyped with biallelic SNPs can be analyzed

using multivariate methodologies based on various similarity or distance measures, where one of
the two alleles at each locus (SNP) is arbitrarily designated as the reference allele. Consequently,
the resulting SNP information matrix will be:

X = [xik] (1)

Where X is a matrix of n rows and m columns, n represents the number of inbred lines (rows)
and m represents the number of SNPs (columns). Each entry xik takes the value 0, 1, or 2 depending
on whether line i (Li) has 0, 1, or 2 copies of the reference allele at SNP k. For homozygous inbred
lines, however, xik can only take the values of 0 or 2. This property of the X matrix simplifies and
influences certain overlaps between different similarity and distance indices.

Table 1. Classification of SNPs based on the genotypes of lines Li and Lj, where m represents the total number of SNPs
used for the genotype characterization of the germplasm

Li

Reference allele Non-reference allele Total
Lj Reference allele a b a + b

Non-reference allele c d c + d
Total a + c b + d m

Given any two rows of matrix X (Equation 1), representing two homozygous lines Li and Lj,
let “a” denote the number of SNPs where both lines have the reference allele, “d” represent the
number of SNPs where both lines have the non-reference allele, “c” denote the number of SNPs
where Li shows the reference allele and Lj does not, and “b” refer the number of SNPs where Lj has
the reference allele and Li does not, and “d” refer the number of SNPs where Lj has the reference
allele and Li does not (as show in Table 1). Based on this SNP classification and the structure of
matrix X, different similarity and distance indices between lines can be defined.
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2.1 Similarity Indexes for Inbred Lines
2.1.1 Simple matching coefficient or proportion of shared alleles

SM(Li; Lj) = (a + d)/(a + b + c + d) = (a + d)/m (2)

For inbred lines, SM represents the proportion of shared alleles between lines calculated as ((2a +
2d)/2m), irrespective of the reference allele. SM ranges from 0, when no alleles are shared, to 1,
when all alleles are shared. Each shared allele contributes with 1/m to the overall similarity score.

2.1.2 Jaccard coefficient

J (Li; Lj) = a/(a + b + c)

The J value will vary according to changes in the reference allele. The “d” SNPs, where both
lines share the non-reference allele, hold the same weight as the “a” SNPs, where the lines share the
reference allele (Table 1). Ignoring these “d” SNPs negatively impacts confidence in the coefficient.

2.1.3 Dice coefficient

Di(Li; Lj) = 2a/(2a + b + c)

In this scenario, greater weight is assigned to the SNPs for which both lines share the reference
allele. Consequently, Di shares the same limitation as J in that it does not account for the "d" SNPs;
as the reference allele changes, the coefficient value also changes.

It is important to note that J and Di coefficients can be utilized based on a table that categorizes
each allele by the presence or absence in the two lines, although this approach is not applicable
within the framework we are currently presenting.

2.1.4 Genomic similarity
The SM similarity coefficient (Eq. 2) assigns equal weight to all alleles, irrespective of their pop-

ulation frequencies. However, this simplification may overlook the significance of low-frequency
alleles, which can offer more valuable insights into the genetic similarity between lines. Sharing a
rare allele might indicate a closer relationship than sharing a common, high-frequency allele. For
the kth column of matrix X (Eq. 1) , the mean is given by 2pk, where pk represents the proportion of
lines in which SNPk has the reference allele. When considering the genotyped lines as the popula-
tion under study, pk reflects the reference allele frequency, while (1 – pk) denotes the non-reference
allele frequency. The column-centered matrix X is defined as follows:

Xc = [xik – 2pk] (3)

In a population that is in Hardy-Weinberg equilibrium, X (Eq. 1) admit 0, 1 or 2 copies of the
reference allele and the expected variance of column kth is 2pk(1 – pk), but since in inbred lines all
loci are expected to be homozygous, the variance of the kth column is 4pk(1–pk), then standardizing
X by columns gives:

Xs =
[
xs

ik
]

=

[ (
xik – 2pk√
4pk (1 – pk)

)]
(4)
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Patterson et al. (2006) made significant contributions to the study of population structure by intro-
ducing a normalized version of X, which is proportional to Xs, demonstrating that this scale method
is more sensitive in detecting population structures compared to previous methods.

Based on matrix Xc (Eq. 3), a genomic similarity matrix is defined as: G1 = 1
mXcXt

c , then the
similarity between two lines is defined by the entries of G1:

[
G1
(
Li; Lj

)]
=

 1
m

m∑
k=1

(xik – 2pk)
(

xjk – 2pk

) (5)

In traditional similarity measures, the similarity of a line with itself is 1 (maximum similarity). How-
ever, the genomic similarity matrix G1 ranges from –1 to 4, deviating from this rule due to the
incorporation of allele frequencies. The contributions of different SNPs to this similarity measure,
based on Table (1), are defined as follows: "a" SNPs (where xik = xjk = 2) contribute with a value of
4
m (1 – pk)2, "d" SNPs (wherexik = xjk = 0) contribute with a value of 4

m (pk)2, "(b + c)" SNPs (where
xik = 2 and xjk = 0, or vice versa) contribute penalizing de similarity with a value of – 4

mpk (1 – pk).
While the similarity of a line with itself does not equal 1, it is always greater than or equal to its

similarity with any other line. This can be expressed mathematically as::

G1 (Li; Li) ≥ G1
(
Li; Lj

)
∀ Li , Lj.

This condition implies that the similarity between any two lines cannot exceed the similarity of
each line with itself, which will be an important aspect in subsequent analyses.

In addition to G1, another genomic similarity index can be derived from the matrix Xs (Eq. 4).
This alternative index is represented by the matrix G2 = 1

mXsXt
s ,

[
G2
(
Li; Lj

)]
=

 1
m

m∑
k=1

(xik – 2pk)
(

xjk – 2pk

)
4pk (1 – pk)

 (6)

G2 ranges from –1 to ∞ and considers allele frequencies in a different manner compared to G1:
“a” SNPs contribute with 1

m
(1–pk)

pk
, “d” SNPs contribute with 1

m
pk

(1–pk) , “(b + c)” SNPs contribution

is penalized with a constant value of – 1
m , regardless of the allele frequencies.

The product pk (1 – pk) reach its maximum value of 0.25 when pk = 0.5 and decreases symmetri-
cally as pk approaches to 0 or 1. By standardizing X columns, the impact of sharing low-frequency
alleles on the similarity increased (Figure 1). The theoretical range of G2 is (–1;∞), but it is influ-
enced by the SNP filtering criteria. When excluding SNPs with minor allele frequency (MAF) less
than 0.05, the maximum value of G2 is lower than 19 . If only SNP with MAF less than 0.01 are
excluded, the maximum value drops below 99. Like G1, the G2 similarity also satisfies the inequality
G2 (Li; Li) ≥ G2

(
Li; Lj

)
for all Li, Lj. This means that the similarity of a line with itself is always

greater than or equal to its similarity with any other line.
Figure 1 illustrates that for both G1 (Eq. 5) and G2 (Eq. 6), the lower the frequency of the

shared allele, the greater its contribution to the similarity, while SM is not affected. This effect is
more pronounced for G2. While the impact of a shared allele in G1 is proportional to the squared
probability of the absent allele, in G2, it is proportional to the odds ratio of the absent allele.
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Figure 1. Contribution of SNPs to genomic similarity indexes as a function of their reference allele frequencies. Solid lines
represent contribution of shared reference alleles, dashed lines contribution of a non-reference shared alleles, and dotted
lines contribution (penalty) of the non-shared alleles.

In the context of genetic prediction (GP) for a given trait, lines in X rows are a random sample
from a population, and for the genetic effects the normal distribution assumed is :

g ∼ N
(

0; σ2
gG
)

where: g = [gi] is the vector of breeding values for each individual concerning the trait, G is the
genomic additive relationship matrix, σ2

g represents the genetic variance of the trait within the
population captured by the model.

Several formulations for the genomic relationship matrix G have been proposed (Fernando et al.,
2017; Meuwissen et al., 2001; VanRaden, 2008; VanRaden, 2007). However, the most referenced
matrices are related to G1 and G2.

The original proposal is known as the animal model, where G = A, A is proportional to the
additive relationship matrix, and relies solely on pedigree data to calculate the expected probabilities
that pairs of loci are identical by descent (Wright, 1922).

For the matrix G, when genomic information from SNPs it is available, VanRaden (2008) first
suggested the following formulation:

GvR1 =
1

2
∑m

k=1 pk (1 – pk)
XcXt

c (7)
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In this equation, pk represents the population frequency of the reference allele for the kth SNP.
This approach creates a genomic relationship matrix analogous to the additive genetic relationship
matrix (A), in the sense that its expected value (E (GvR1)) is A. Treating the columns of X as random
variables, then E (XcXt

c) =
(
2
∑m

k=1 pk (1 – pk)
)

A, hence E (GvR1) = A (Habier et al., 2007).
It is important to note that GvR1 is related to G1, but while G1 is based on pk the frequency

of the reference allele for the kth SNP in the groups of lines represented in X’s rows, GvR1 uses
the frequencies of those alleles in the population from which the lines in X were selected. These
difference is some times not clearly establish in some papers and can lead to confusion. If the lines
in X can be considered as a random sample of the population, then pk values used in G1 are the
estimators of the ones needed for GvR1.

When there are enough markers, so they are in linkage disequilibrium with all the QTL (Quan-
titative Trait Loci), GvR1 provides more information about the covariance between relatives than
matrix A, because realized relationships differs from expected relationships (Nejati-Javaremi et al.,
1997; VanRaden & Tooker, 2007).

The similarity index G2 is associated with the second formula proposed by VanRaden (2008) for
constructing the genomic relationship matrix, defined as:

GvR2 =

 1
m

m∑
k=1

(xik – 2pk)
(

xjk – 2pk

)
2pk (1 – pk)

 (8)

Following the same procedure than (Habier et al., 2007) it can be proved that E (GvR2) = A. Notice
that while G2 used the reference alleles frequencies in the groups of lines represented in X, GvR2
needs the populations frequencies.

Patterson et al. (2006) employed a matrix proportional to G2 to investigate population structure
using different methodologies. This highlights the versatility and relevance of the G2 similarity
index in population genetics studies.

2.2 Distances for Inbred Lines
Genetic distance between genotypes can be calculated using various statistical approaches (Nei,

1972; Nei et al., 1983; Reif et al., 2005; Weir & Cockerham, 1996). From a mathematical perspective,
when individuals are characterized by a vector of multiple quantitative traits, the distance between
them can be defined as the “magnitude” of their difference vector. Several common distance metrics
can be employed, each measured using different norms: Manhattan (L1 norm), Euclidean (L2 norm)
and Standardized Euclidean.

2.2.1 Manhattan distance or Taxi cab
The Manhattan distance, denoted as dMan

(
Li; Lj

)
, is defined mathematically as:

dMan
(
Li; Lj

)
=

m∑
k=1

∣∣∣xik – xjk

∣∣∣ =2 (b + c) (9)

This metric measures the distance by summing the absolute differences between corresponding
coordinates of two vectors. It is analogous to calculating the distance between two points on a grid,
where movement is restricted to parallel paths along the axes. The range of Manhattan distance is
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between 0 and 2m, making it dependent on the total number of markers. This dependence is not
desired when assessing genetic distances.

Nei et al. (1983) proposed a modified version of the Manhattan distance that addresses this limi-
tation. This rescaled distance, denoted as dNei83

(
Li; Lj

)
, is defined as:

dNei83
(
Li; Lj

)
=

1
2m

m∑
k=1

∣∣∣xik – xjk

∣∣∣ =
b + c
m

(10)

In this formulation, dNei83 ranges from 0 to 1 and is independent of the number of markers. This
distance can be interpreted as the proportion of non-shared alleles between two genotypes. The
original expression of this distance was in terms of the presence-absence of each allele at a locus.
However, when applied to biallelic loci and homozygous lines, it can be simplified as equation (10).

2.2.2 Euclidean distance
The Euclidean distance between two genotypes, denoted as dE

(
Li; Lj

)
is defined mathematically

as:

(
dE
(
Li; Lj

))2 =
m∑

k=1

(
xik – xjk

)2
(11)

This distance is based on the L2 norm and represents the length of the straight line connecting the
vector representations of the genotypes in the rows of matrix X.

According to equation (11) and Table (1), there are "a" SNPs (where xik = xjk = 2) and "d" SNPs
(where xik = xjk = 0), these SNPs do not contribute to the distance between lines. Only the "b + c"
SNPs where xik = 2 and xjk = 0, or vice versa contribute. Specifically, for these contributing SNPs,

the squared difference is given by (2 – 0)2 = 4. Thus, the Euclidean distance can be expressed as:

dE
(
Li; Lj

)
= 2
√

(b + c)

Consequently, the Euclidean distances between lines depend solely on the number of non-shared
alleles and range from 0 to 2

√
m. Similar to the Manhattan distance, this dependence on the number

of markers is undesirable for assessing genetic distances. To address these limitations, Wright (1978)
and Goodman & Stuber (1983) proposed a modification to the Euclidean distance known as Modified
Rogers’ distance, denoted as dMR

(
Li; Lj

)
and defined as:

dMR
(
Li; Lj

)
=

1
2
√

m
dE

(
Li; Lj

)
=

1
2
√

m

√√√√ m∑
k=1

(
xik – xjk

)2
=

√
b + c
m

(12)

Modified Rogers’ distance ranges from 0 and 1 and is independent of the number of markers. Ac-
cording to Eq. (13), the Modified Rogers’ distance dMR considers the alleles frequencies as follow,
there are "a" SNPs (where xik = xjk = 2) and "d" SNPs (where xik = xjk = 0), these SNPs do not
contribute to the distance between lines; only the "b + c" SNPs where ik = 2 and xjk = 0, or vice
versa contribute, precisely each one contributes to the squared dMR by 1

m .

Braz. J. Biom., v.43, e-43787, 2025. 7
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In its original definition, Modified Rogers’ distance considered all alleles at each locus. However,
for biallelic markers and homozygous (inbred) lines, this expression can be simplified to align with
equation (12).

From the relationship between L1 an L2 norms, it follows that: dMR
(
Li; Lj

)
≤ dNei83

(
Li; Lj

)
for every pair of lines. Particularly when measuring genetic distances, it is found that:

dMR
(
Li; Lj

)
=
√

dNei83
(
Li; Lj

)
This means that when the proportion of shared alleles is high,

Modified Rogers’ distance magnifies the distances between individuals compared to dNei83.
Note that both dNei83 and dMR depend solely on the number of non-shared alleles but do not

consider their frequencies. This characteristic highlights their utility in measuring genetic distances
while also indicating a potential limitation in fully capturing genetic diversity.

2.2.3 Standardized Euclidean distance
The standardized Euclidean distance between lines Li and Lj can be defined as the Euclidean

distance (based on L2 norm) between the corresponding rows in the standardized matrix Xs ( Eq.
4):

dE (Xs[i, ]; Xs[j, ]) =

√√√√√√ m∑
k=1

 (Xik – 2pk)

2
√

pk(1 – pk)
–

(
Xjk – 2pk

)
2
√

pk(1 – pk)

2

The Euclidean distance dE depends on the number of markers, since each marker contributes
a non-negative value to the total distance. To obtain a distance metric that is independent of the
number of markers, denoted as dSE, dE can be rescale as follows:

dSE
(
Li; Lj

)
=

1√
m

√√√√√ m∑
k=1

(
xik – xjk

)2

4pk (1 – pk)
(13)

According to equation (13) and Table (1), the standardized Euclidean distance dSE considers
the alleles frequencies as follow, there are "a" SNPs (where xik = xjk = 2) and "d" SNPs (where
xik = xjk = 0), these SNPs do not contribute to the distance between lines; only the "b + c" SNPs
where xik = 2 and xjk = 0, or vice versa contribute. Specifically, the contribution of these SNPs

squared of dSE is given by 1
m

(2–0)2

4pk(1–pk) = 4
4pk(1–pk) = 1

pk(1–pk) .
dSE depends solely on the non-shared alleles, weighting their contributions by the product of

the frequencies of both possible alleles for each locus. When the reference allele frequency for a
locus is 0.5 and the lines do not share this allele, its contribution to the squared distance reaches
its minimum value of

(
4
m

)
. Conversely, as the reference allele frequency approaches 0 or 1, its

contribution increases significantly, tending toward infinity. Therefore, not sharing alleles with a
frequency of 0.5 has less impact than not sharing alleles with frequencies close to 0 or 1. As a result,
the range of dSE is (0, ∞) (Fig. 2). The maximum value of dSE will vary depending on SNP filtering
criteria. For instance, excluding SNPs with MAF less than 0.05 results in a maximum value of less
than 4.59. In contrast, if SNPs with MAF less than 0.01 are excluded, the maximum value increases
but remain less than 10.06.

Hamming distance is a popular measure in information theory and coding theory, for two strings
of equal length, Hamming distance is defined as the number of positions at which the corresponding
symbols differ. When applied to the representation of lines in the rows of matrix X there are b + c
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Figure 2. Contribution of the non-shared reference alleles on the squared standardized Euclidean distance dSE. The vertical
dashed lines indicate the commonly used thresholds for MAF at 0.01 and 0.05.

SNPs where the lines do not share an allele. Thus, it is related to dMan (Eq. 9) and dNei83 (Eq. 10) as
follows:

dHamm
(
Li; Lj

)
= b + c =

1
2

dMan
(
Li; Lj

)
= m dNei83

(
Li; Lj

)
Table 2. Genetic distance metrics for inbred lines based on allele classifications from Table (1). Standardized Euclidean
distance dSE is expressed in terms of the entries of matrix X and the corresponding allele frequencies

Genetic distance Range Euclidean Based on alleles fre-
quencies

dNei83
(
Li; Lj

)
= b+c

m [0, 1] No No

dMR
(
Li; Lj

)
=
√

(b+c)
m [0, 1] Yes No

dSE
(
Li; Lj

)
= 1√

m

√∑m
k=1

(
xik–xjk

)2

4pk(1–pk) [0,∞] Yes Yes

3. Relationships between similarities and distances for inbreed
lines

Similarity and distance are inversely correlated, allowing for the association of a distance metric
with each similarity index. For each similarity indexes K (Li; Li) several distances can be associated.

When a similarity index K range between 0 and 1, an associated distance can be expressed
as 1 – K. This is the case of dNei83

(
Li; Lj

)
= 1 – SM

(
Li; Lj

)
. For similarity indexes that do

not fall within the [0, 1] range, a kernel distance can still be defined if they satisfy the condition:
K (Li; Li) ≥ K

(
Li; Lj

)
for all Li, Lj. In this case, the squared kernel distance is defined as:(
dK
(
Li; Lj

))2 = K (Li; Li) + K
(
Lj; Lj

)
– 2K

(
Li; Lj

)
The kernel distance dK satisfices the following properties:

Braz. J. Biom., v.43, e-43787, 2025. 9
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dK (Li; Li) = 0 for every Li, dK
(
Li; Lj

)
≥ 0,

dK
(
Li; Lj

)
= dK

(
Lj; Li

)
for all genotypes Li and Lj.

Here K serves as the kernel of the distance (Aronszajn, 1950; Hein & Bousquet, 2005).
When using the similarity measure SM as the kernel, the corresponding distance is defined as:

(
dSM

(
Li; Lj

))2 = SM (Li; Li) + SM
(
Lj; Lj

)
– 2SM

(
Li; Lj

)
= 2
(
1 – SM

(
Li; Lj

))
= 2 dNei83

(
Li; Lj

)
= 2
(
dMR

(
Li; Lj

))2

Thus, the kernel distance based on SM similarity is proportional to the Modified Rogers’ distance
(dMR). Similarly, when using the genomic relationship matrix G1 as a kernel the resulting distance
is also proportional to dMR:

(
dG1

(
Li; Lj

))2 = G1 (Li; Li) + G1
(
Lj; Lj

)
– 2G1

(
Li; Lj

)
=

1
m

m∑
k=1

(xik – 2pk)2 +
1
m

m∑
k=1

(
xjk – 2pk

)2
– 2

1
m

m∑
k=1

(xik – 2pk)
(

xjk – 2pk

)
=

1
m

m∑
k=1

(
xik – xjk

)2

=
(
2dMR

(
Li; Lj

))2

= 2
(
dSM

(
Li; Lj

))2

Although G1 similarity, in its calculations, account for allele frequencies (in the lines represented
in X), the induced kernel distance is proportional to a distance that remains unaffected by these
frequencies, with the constant of proportionality depending on the allele frequency across all loci.

In contrast, when using the similarity index from the genomic relationship matrix G2 (Eq. 6) as
a kernel, the distance obtained is dSE

(
Li; Lj

)
.

(
dG2

(
Li; Lj

))2 =
(
G2 (Li; Li) + G2

(
Lj; Lj

)
– 2G2

(
Li; Lj

))
=

1
m

m∑
k=1

(xik – 2pk)2

4pk (1 – pk)
+

1
m

m∑
k=1

(
xjk – 2pk

)2

4pk (1 – pk)
– 2

1
m

m∑
k=1

(xik – 2pk)
(

xjk – 2pk

)
4pk (1 – pk)

=
1
m

m∑
k=1

(
xik

2
√

pk (1 – pk)
–

xjk

2
√

pk (1 – pk)

)2

=
(
dSE
(
Li; Lj

))2
Distance dSE is shaped by population allele frequencies at loci where lines do not share the al-

lele. This distinction highlights how different similarity measures can influence genetic distance
assessments in diverse ways.
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4. Graphical visualization of the distance between inbred lines
Multidimensional scaling (MDS), as described by Cox & Cox (2000), is a powerful multivariate

data visualization technique that allows researchers to represent complex data in a lower-dimensional
space. Given a distance matrix d =

[
dij
]

that quantifies the dissimilarities between individuals, MDS
aims to find a corresponding set of points in a real vector space of dimension p. The goal is to en-
sure that the Euclidean distance

(
d̃ij
)

between points i and j is “as close as possible” to the original

dissimilarity measure
(
dij
)
. The interpretation of "as close as possible" can vary, leading to differ-

ent methodologies for MDS. Classical MDS, also known as principal coordinate analysis (PCoA)
minimize the stress function defined as:

Stress
(

d, d̃
)

=

∑
i ̸=j

[
dij – d̃ij

]2

∑
i ̸=j d2

ij

This approach focuses on preserving the relationships among individuals while reducing dimen-
sionality. Principal component analysis (PCA) is another linear dimensionality reduction technique
widely used in exploratory data analysis and visualization. PCA transforms the data into a new
coordinate system where the first axis captures the largest variance, followed by subsequent axes
that explain the remaining variance. The mathematical foundation for PCA involves singular value
decomposition (SVD) applied to the matrix:

1√
m

Xc = UDV t

Where: the columns of U and V are the left and right singular vector of 1√
mX

c
, respectively. U and

V are othonormal matrices with rank r equal to the rank of Xc, D is a diagonal matrix containing
the singular values of 1√

mXc in decreasing order: λ1 > λ2 > · · · > λr .

The SVD of 1√
mXc yields: 1

mXcXct = UD̃U t where D̃ is a diagonal matrix with the squared

singular values of 1√
mXc. This expression satisfies the definition of eigenvalue decomposition of

1
mXcXct, indicating that the eigenvalues and eigenvectors of 1

mXcXct, correspond to the squared
singular values and left singular vectors of 1√

mXc, respectively. To reduce dimensionality, only
the first few singular vectors and values are utilized. For example, if we desire to retain only two
dimensions, we can denote:

U1:2: The first two columns of U ,
D1:2;1:2: The diagonal matrix containing just the first two singular values.
The Euclidean distances between rows 1√

mX
c

are best represented in two dimensions by the

Euclidean distances between rows of U1:2D1:2;1:2.
Consequently, applying PCA to 1√

mXc is equivalent to applying classical MDS to the Euclidean
distance matrix (Venables & Ripley, 2013) . It’s important to note that the covariance matrix for the
columns of X is given by 1

mXctXc, which leads to the total variance in the columns of X:

Tr
(

1
m

Xc
tXc

)
= Tr

(
1
m

XcXc
t
)

= Tr (D) =
r∑

k=1

(λk)2

This relationship explains why reduced–dimensional representations recover a maximum percent-
age of the total variance in the columns of X .
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Given these concepts, it follows that since dMR (Eq. 12) represents the Euclidean distance be-
tween rows of

(
1

2
√

mXc
)

, applying PCA to 1
2
√

mXc will yield principal coordinates that provide the
best representation of dMR among lines in r dimensions. Furthermore, performing PCA on both

1
2
√

mXc and 1
4mXcXct = 1

4 G1 will yield equivalent representations for these lines, thus also represent-

ing dMR. Similarly, applying PCA on 1√
mXs, or on G2, will result in principal coordinates that best

represent the standardized Euclidean distancedSE (Eq. 13). Since dNei83 is a non-Euclidean distance
metric, classical MDS is required to create plots similar to PCA plots that accurately represent the
dNei83 distances between lines in r dimensions.

A critical consideration for accurately representing distances in plots is ensuring that the aspect
ratio of the x–axis and y–axis is set to 1. This means that one unit on the x-axis should occupy the
same visual space as one unit on the y–axis. Only by adhering to this principle can the straight–line
distance between two points be perceived accurately by the human eye, thereby reflecting the true
distance that it is intended to represent.

5. Conclusions
The methods for measuring genetic distance and similarity between inbred lines can be cate-

gorized based on the L1 and L2 norms utilized. When characterizing the genetic information of a
population of inbred lines, it is crucial to determine whether to use Manhattan distance, Euclidean
distance based on raw marker information, or Euclidean distance based on standardized marker
information to best capture genetic diversity. If the objective of the genetic characterization is to
understand the behavior of a specific trait, it becomes essential to consider the underlying gene
action associated with that trait. This understanding will influence the importance of accounting
for allele frequencies in the population when making descriptions. For example, if two lines do not
share an allele at a particular locus, that locus will contribute to their differentiation in trait behavior.
However, the question arises: Should this contribution be weighted by allele frequency or treated
independently? From a statistical or mathematical standpoint, there is no definitive right or wrong
answer to this question; it ultimately depends on the specific context of the study.

For example, if the genotypes under study come from a well-established breeding program, most
of the genes are likely already selected to be part of the population. In this case, if low-frequency
alleles are suspected not to contribute to the trait of interest, then SM similarity, along with dNei83
or dMR, -which are not influenced by allele frequency- would be preferred over G1, G2 and dSE.
Conversely, if the genotypes consist of a breeding program where few foreign materials have been
recently introduced, the valuable new alleles will likely be at low frequency. In this scenario, G1,
G2 and dSE. will be recommended because they pay more attention to low-frequency new alleles
(Figure: 3). Additionally, when the objective of the study is to estimate genetic variance components
using G2, the additive variance of allele effects may be overestimated if linkage disequilibrium has
been induced by selection within the population (Fernando et al., 2017).

Researchers must carefully evaluate their objectives and decide which framework they wish to
adopt for their analyses. This thoughtful consideration will enhance the clarity and relevance of
their genetic characterizations.

In Table (2) are summarized the key features of different distances used for the genetic compar-
ison of inbred lines. The primary distinction between them lies in whether they induce Euclidean
geometry and whether they are influenced by the number of markers used for genotyping. Thus,
when genetic distance is proportional to the number of non-shared alleles (b + c), it is characterized
by a Manhattan geometry (L1). Conversely, if genetic distance is proportional to the square root of
the number of non-shared alleles

(√
b + c

)
, it is defined by Euclidean geometry. In both scenarios,

allele frequencies within the population of those loci are not considered.
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Figure 3. Summary chart outlining key considerations for the genetic characterization of a germplasm base forming a
breeding program. This includes the selection process that enhances the frequency of allele combinations associated with
improved agronomic performance, as well as the implications of incorporating foreign genotypes into mature breeding
program.

The standardized Euclidean distance dSE (Eq. 13) is the only distance metric that takes into
account the frequencies of population alleles. Understanding that relationship between distances,
similarities, and the interconnections between these measures underscores the importance of their
implications in genetic analyses. By recognizing these connections, researchers can make more
informed decisions about which metrics to use in their studies.

If the objective of genetic characterization is to estimate the genomic relationship matrix for use
in genomic prediction models, then , GvR1 (Eq. 7) and GvR2 (Eq. 8) are the most suitable similarity
indices. Since both measures are analogous to the additive genetic relationship matrix A (VanRaden,
2008).

Additionally, it is essential to evaluate whether to consider rare alleles to avoid overestimating
genetic differences within a specific population. Depending on the trait being predicted, selecting
either GvR1 or GvR2 may be more appropriate. If the aim is to characterize population structure,
PCA analysis on G2 has been recommended as a useful and sensitive tool (Cavalli-Sforza, 1994;
Patterson et al., 2006).

In summary, the selection of the appropriate measure of similarity or distance depends on the
specific objectives of genetic characterization for inbred line germplasm. Understanding the differ-
ent properties of these measures is crucial for choosing the most suitable one for ultimately enhancing
the efficiency of a crop breeding strategy.
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