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Abstract
This article introduces the New Transformed Sine G Family of distributions, which is a new probabil-
ity distribution based on trigonometric transformation. It provides detailed derivations of the statistical
properties associated with this distribution, such as the hazard function, survival function, inverse hazard,
quantile function, moments, moment generating function, and the median. The parameter estimation of
the model was conducted using the maximum likelihood method, and the performance of the estimation
method was evaluated through Monte Carlo simulation. Furthermore, the applicability of the proposed
distribution was demonstrated by analyzing two real datasets, where the model showed superior fit com-
pared to existing distributions for these datasets.
Keywords: Statistical inference, Maximum likelihood, Estimation, NTS-G Family Distribution.

1. Introduction
Statistical distributions are essential for understanding and analyzing various phenomena in the

real world. In recent years, there have been significant developments in the theory of probability
distribution, resulting in the creation of several general families of distributions. These distributions
have been successfully applied to solve a wide range of statistical problems. For a complete grasp of
this subject, see De Brito et al. (2019).

In many practical situations, classical distributions may not accurately represent real-world data
(Khosa et al., 2020). For example, when dealing with data that exhibit a monotonic hazard rate
function (HRF), it is common to use the Rayleigh, exponential, or Weibull distributions. Among
these models, the Weibull distribution is most commonly used to model natural phenomena (Yousof
et al., 2023). However, the Weibull model is not suitable for data that show a nonmonotonic HRF,
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such as unimodal, modified unimodal, or bathtub-shaped data (Ahmad et al., 2019). To address these
challenges, researchers have shown increasing interest in developing more flexible distributions.
This is achieved by extending the classical distributions and introducing additional parameter(s) to
the baseline model.

Over the last three decades, several families of distributions have been proposed and examined to
model data in various applied fields, such as medical, social, environmental, engineering, and biolog-
ical studies. Some well-known families include the exponential G family by Gupta & Kundu (1999),
the transmuted G family by Shaw & Buckley (2007), the Marshall-Olkin G family by Marshall &
Olkin (2007), the Kumaraswamy G family by Nadarajah et al. (2012)) and the Topp Leone-G family
by Al-Shomrani et al. (2016), among many others.

Recently, the field of distribution theory has seen numerous contributions from researchers.
In particular, trigonometric families of continuous distributions, such as the Sin-G family, have
gained considerable attention in both statistical theory and practical applications (Jamal et al., 2021).
Mahmood et al., 2019 introduced a new family of distributions called the sine-G family, which
utilizes a trigonometric function. Another significant contribution to these families was made by
Ampadu, 2021, who developed the hyperbolic Tan-X family. Additional families include the sine
Kumaraswamy-G family Chesneau & Jamal, 2020, the sine Topp-Leone-G family Al-Babtain et al.,
2020, the alpha-sine-G family Benchiha et al., 2023, the Sine Type II Topp-Leone-G family Isa et al.,
2023, the sine π power odd-g family Sapkota et al., 2024, a new weighted sine-Weibull distribution
Heydari et al., 2024, and a novel sin-G class of distributions Ahmad et al., 2024. These new families
offer enhanced flexibility and applicability compared to existing models.

Maximum Likelihood Estimation (MLE) is widely recognized as the superior method for esti-
mating parameters in various statistical models, including a family of probability distributions (see
Adubisi et al., 2024; Bandar et al., 2023), due to its efficiency and consistency, particularly for large
sample sizes Lehmann & Casella, 2006. Moreover, MLE is consistent, meaning that as the sample
size increases, the estimators converge to the true parameters Cox, 2018. MLE is also robust in
the presence of censored data, which is common in survival analysis, effectively handling right-
and left-censoring, as evidenced by practical applications in survival and reliability models Bickel &
Doksum, 2015. Therefore, in this study, we adapt MLE for parameter estimation.

Building on the previous discussion, we now present a novel approach to developing new prob-
ability models that eliminates the requirement for extra parameters. This innovative method is
referred to as the New Transformed Sine G family distributions.

A New Transformed Sine G family is being established through trigonometric transformation
and exponential truncation. This family will offer greater flexibility with a diverse range of distribu-
tion shapes, including skewed, bimodal, and non-monotonic behaviors. Furthermore, this approach
is well-suited for modeling periodic or cyclical data, such as daily or yearly fluctuations, which tra-
ditional distributions may not effectively capture.

2. Proposed Distribution
A random variable X is said to have the New Transformed sine G family of distributions (NTS-

G) if its cumulative density function (cdf ) and probability density function (pdf ) is expressed re-
spectively as:

F (x; ε) =
e
sin
[

πH(x)
1+H(x)

]
– 1

e – 1
(1)
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f (x; ε) =
πh(x)e

sin
[

πH(x)
1+H(x)

]
[e – 1]

[
1 + H(x)

]2 cos
[

πH(x)
1 + H(x)

]
(2)

Subtracting the cdf in equation 1 from 1, and simplyfying further, the survival function S(x, ϵ) of
NTS-G is represented as;

S (x; ε) =
e – e

sin
[

πH(x)
1+H(x)

]
e – 1

(3)

The hazard function H(x; ϵ) of the NTS-G distribution was obtained by dividing the density func-
tion in 3 by the survivor function in 4 and simplifying further gives;

H (x; ε) =
πh(x)e

sin
[

πH(x)
1+H(x)

]
[
1 + H(x)

]2 [e – e
sin
[

πH(x)
1+H(x)

]] cos
[

πH(x)
1 + H(x)

]
(4)

The cumulative hazard function Hr(x; ϵ) of NTS-G is obtained by integrating the hazard function
in equation 4 over time t and simplyfying further gives;

Hr (x; ε) = – log

 e – e
sin
[

πH(x)
1+H(x)

]
e – 1

 (5)

2.1 Mathematical Properties of The Proposed Model
Here, we introduce some mathematical properties of the NTS-G family of distributions, which

include the quantile function, the moment, and the moment-generating function.

2.1.1 Quantile Function
The quantile function of NTS-G family of distribution can be obtained by finding the inverse

of the cummulative function in equation 1 which is expressed as;

xu = H–1

(
arcsin

[
log (u(1 – e)) + 1

]
π – arcsin

[
log (u(1 – e) + 1)

]) ; 0 < u < 1 (6)

The median of the NTS-G family is obtained by substituting, u = 0.5 in equation 6which gives;

x0.5 = H–1

(
arcsin

[
log (0.5(1 – e)) + 1

]
π – arcsin

[
log (0.5(1 – e) + 1)

]) (7)

The first and third quartiles of NTS-G family can also be obtained similarly by substituting u = 0.25
and u = 0.75 in equation 6 given respectively in 8 and 9 as;

x0.25 = H–1

(
arcsin

[
log (0.25(1 – e)) + 1

]
π – arcsin

[
log (0.25(1 – e) + 1)

]) (8)

x0.75 = H–1

(
arcsin

[
log (0.75(1 – e)) + 1

]
π – arcsin

[
log (0.75(1 – e) + 1)

]) (9)
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2.1.2 Moments
The rth moment of the NTS-G random variable X is defined as:

µ′r =
∞∫

–∞

xrf (x; ε)dx (10)

Substituting the pdf of NTS-G in equation (2) into 10, we obtained the rth moment of the NTS-G
distribution as;

µ′r =
∞∫

–∞

xr
πh(x; ε) cos

(
πH(x;ε)
1+H(x;ε)

)
(e – 1) (1 + H(x; ε))2

e
sin
(

πH(x;ε)
1+H(x;ε)

)
dx (11)

using power series:

ey =
∞∑
i=1

yi

i!
(12)

Using equation (12)

e
sin
(

πH(x;ε)
1+H(x;ε)

)
=

∞∑
i=1

sin
(

πH(x;ε)
1+H(x;ε)

)
i!

(13)

Also we have that;
1

(1 + x)2
=

∞∑
j=1

(–1)jjxj–1 (14)

Using equation (14)
1

(1 + H(x; ε))2
=

∞∑
j=1

(–1)jj
[
1 + H(x; ε)

]j–1 (15)

Applying binomial expansion to equation (15)we have;

1
(1 + H(x; ε))

=
∞∑
j=1

j∑
k=0

j(–1)j
(

j – 1
k

)[
H(x; ε)

]
(16)

Substituting equation (13) and (15) in (11) the rth moment of the NTS-G distribution can be sim-
plified as;

µ′r =
∞∑
i=1

∞∑
j=1

j∑
k=0

j(–1)j
(

j – 1
k

)
i!(e – 1)

∞∫
–∞

xrh(x; ε) cos
(

πH(x; ε)
1 + H(x; ε)

)[
H(x; ε)

]
dx (17)

2.1.3 Moment Generating Function
The moment generating function of NTS-G family of distribution can be derived as;

MX (t) = E
[
etx] =

∞∫
–∞

etxf (x; ε)dx (18)
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Substituting the pdf of NTS-G in equation 2 into 18, we obtained the rth moment of the NTS-G
distribution as;

MX (t) =
∞∫

–∞

etxπh(x; ε)e
sin
(

πH(x;ε)
1+H(x;ε)

)
(e – 1)

[
1 + H(x)

]2 cos
(

πH(x; ε)
1 + H(x; ε)

)
dx (19)

Applying (12) we have;

etx =
∞∑

m=1

(tx)i

i!
=

∞∑
m=1

tixi

i!
(20)

so that;

e
tx+sin

(
πH(x;ε)
1+H(x;ε)

)
=

∞∑
i=1

sin
(

πH(x;ε)
1+H(x;ε)

)i

i!
(21)

Applying the binomial expansion in equation 15 and 21 to equation (18)we have;

MX (t) =
∞∑
i=1

∞∑
j=1

j∑
k=0

j(–1)j
(

j – 1
k

)
i!(e – 1)

∞∫
–∞

πh(x; ε)
[
H(x; ε)

] [
tx + sin

(
πH(x; ε)

1 + H(x; ε)

)]i
cos
(

πH(x; ε)
1 + H(x; ε)

)
dx

(22)

2.2 Sub Models
Here we consider some of the special cases of the NTS-G family of distributions.

2.2.1 New Transformed Sine Weibull Distribution
Consider the Weibull distribution with a pdf and cdf given respectively as;

f (x, λ,β) =
λ

β
xλ–1e–

(
x
β

)λ
(23)

F(x, λ,β) = 1 – e
(

x
β

)λ
(24)

Substituting equation (23) and (24) in (2) and (1) respectively, the pdf and cdf of the new transformed
sine Weibull distribution can be obtained as;

f (x; ε) =
π λ
βxλ–1e–

(
x
β

)λ
e
sin

[
π–πe(

x
β )λ

2–e(
x
β )λ

]

[e – 1]
[

2 – e
(

x
β

)λ]2 cos

2π – πe
(

x
β

)λ
2 – e

(
x
β

)λ
 (25)

F (x; ε) =
e
sin

[
π–πe(

x
β )λ

2–e(
x
β )λ

]
– 1

e – 1
(26)
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Figure 1. Probability density funcrion (PDF) and hazard function (h(x)) of NTSW distribution.

Figure 2. Cumulative density function (CDF) and survival function (S(x))of NTSW.
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Figures 1 and 2 show plots for the pdf, hazard function, cdf, and survival function of the NTSW
distribution. The pdf plot indicates that the NTSW distribution has a skewed and reversed-J shape,
making it a suitable model for diverse datasets. Furthermore, the hazard function exhibits increasing,
decreasing, and reverse bathtub shapes, suggesting that the NTSW distribution may be well-suited
for modeling various types of lifetime data.

2.2.2 New Transformed Sine Frechet Distribution
Consider the Frechet distribution with pdf and cdf given respectively as;

f (x, λ,β) = λβx–(β+1)e–λx–β
(27)

F(x, λ,β) = e–λx–β
(28)

Substituting 27 and 28 in 2 and 1 respectively, the pdf and cdf of the New Transformed Sine Frechet
distribution can be obtained as;

f (x; ε) =
λβπx–(β+1)e

sin

[
πe–λx–β

1+e–λx–β

]
–λx–β

[e – 1]
[
1 + e–λx–β

]2 cos

[
πe–λx–β

1 + e–λx–β

]
(29)

F (x; ε) =
e
sin

[
πe–λx–β

1+e–λx–β

]
– 1

e – 1
(30)

Figure 3. Probability density function (PDF) and Hazard function (h(x)) of NTSF distribution at a different parameter values.
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Figure 4. Cumulative density function (CDF) and Survival function (S(x)) of NTSF distribution at a different parameter val-
ues.

Figures 3 and 4 display the plots for pdf, hazard function, CDF, and survival function of the
NTSF distribution. The pdf plot shows that the NTSF is skewed with different shapes, making it a
suitable model for diverse datasets. In addition, the hazard function exhibits increasing, decreasing,
and unimodal shapes, indicating that the NTSF may be suitable for modeling various types of lifetime
data.

2.2.3 New Transformed Sine Kumarswamy Distribution
Consider the Kumarswamy distribution with pdf and cdf given, respectively, as

f (x, λ,β) = αβxα–1(1 – xα)β–1 (31)

F(x, λ,β) = 1 – (1 – xα)β (32)

Substituting 31 and 32 in 2 and 1 respectively, the pdf and cdf of the New Transformed Sine Ku-
marswamy distribution can be obtained as;

f (x; ε) =
αβπxα–1(1 – xα)β–1e

sin

[
π
(

1–(1–xα)β
)

2–(1–xα)β

]
[e – 1]

[
2 – (1 – xα)β

]2 cos

π
(

1 – (1 – xα)β
)

2 – (1 – xα)β

 (33)

F (x; ε) =
e
sin

[
π
(

1–(1–xα)β
)

2–(1–xα)β

]
– 1

e – 1
(34)
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Figure 5. Probability density function (PDF) and Hazard function (h(x)) of NTSK distribution at a different parameter values.

Figure 6. Cumulative density function (CDF) and Survival function (S(x)) of NTSK distribution at a different parameter val-
ues.
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The plots for the pdf, hazard function, cdf, and survival function of the NTSK distribution are
displayed in Fig.5 and Fig.6. The plot for the pdf reveals that the NTSK is skewed with various
shapes, making it a good model for different kinds of dataset. Additionally, it can be observed that
the hazard function exhibits increasing and bathtub shapes. This suggests that the NTSK may be
suitable for modeling various lifetime data.

3. Estimation
Here we present an inferential study of NTS-G. We use the maximum likelihood estimation

(MLE) method to obtain the mathematical expression of the parameter and its maximum likelihood
estimates (MLEs) (for more information on MLE estimation, see Casella & Berger, 2024). Further-
more, a Monte Carlo simulation study is conducted to assess the consistency of the estimates.

Let X1, X2, . . . , Xn represent a random sample of size n taken from the NTS-G family of distri-
butions. The likelihood function (ℓ) can be expressed as follows:

ℓ(ε/X1, X2, ..., Xn) =
n∏

i=1
f (xi, ε) (35)

Substitute the PDF in 2

ℓ(ε/X1, X2, ..., Xn) =
n∏

i=1

πh(x; ε)e
sin
[

πH(x;ε)
1+H(x;ε)

]
(e – 1)

[
1 + H(x; ε)

] cos
[

πH(x; ε)
1 + H(x; ε)

]
(36)

The log likelihood can be derive by taking the natural logarithm of the likelihood function in
equation 36 as;

log ℓ(ε/xi) = n logπ +
n∑

i=1
log h(x; ε) +

n∑
i=1

sin A +
n∑

i=1
log cos A – n log(e – 1) – 2

n∑
i=1

log
[
1 + H(x; ε)

]
(37)

Where; A =
[
πH(x;ε)
1+H(x;ε)

]
To obtain the estimates of the parameter vector ε, we partially differentiate equation 38 with

respect to ε and set the result equal to zero. This simplifies to:

∂ℓ(ε/xi)
∂ε

=
n∑

i=1

h′(x)
h(x)

+
n∑

i=1
cosA

πh(x; ε)[
1 + H(x; ε)

]2 –
n∑

i=1

sin Aπh(x; ε)

cos A
[
1 + H(x; ε)

]2 – 2
n∑

i=1

h(x; ε)
1 + H(x; ε)

(38)

Equation 38 is nonlinear; therefore, it cannot be solved analytically. Hence, we need to employ
numerical methods for the solution.

4. Simulation
In this section, we present a simulation study to evaluate the performance of maximum likelihood

estimates for the parameters. The study involves generating random samples of various sizes from
the NTSW distribution. The sample sizes considered are 50, 100, 250, 500, and 1000. For each
sample, we calculate the maximum likelihood estimates of the parameters β and λ. These steps are
repeated 1000 times, and then we compute the average estimates, average bias, and root mean square
error.
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The results of the simulation study are shown in Tables 1 and 2 below. Based on the predefined
values, we observe that the estimated values of the parameters are close to the predefined values.
Additionally, we note that the bias and mean square error of the estimates decrease as the sample
size increases. These results indicate that the maximum likelihood estimates of the parameters are
consistent.

Table 1. The outcome of simulation for the model’s parameter estimation based on MLE

SET one

β λ

Actual values Sample size Means Biases RMSE Means Biases RMSE

50 1.5442 0.0442 0.1931 1.2703 0.0703 0.2349
β = 1.5 100 1.5232 0.0232 0.1311 1.2305 0.0305 0.1435
λ = 1.2 250 1.5091 0.0091 0.0795 1.2096 0.0096 0.0863

500 1.5024 0.0024 0.0526 1.2036 0.0036 0.0593
1000 1.5004 0.0004 0.0384 1.2029 0.0029 0.0408

Table 2. The outcome of simulation for the model’s parameter estimation based on MLE

SET two

λ β

Actual values Sample size Means Biases RMSE Means Biases RMSE

50 0.5148 0.0148 0.0644 1.0509 0.0509 0.1791
β = 0.5 100 0.5078 0.0078 0.0437 1.0218 0.0218 0.1105
λ = 1.0 250 0.5030 0.0030 0.0265 1.0065 0.0065 0.0670

500 0.5008 0.0008 0.0175 1.0025 0.0025 0.0464
1000 0.5001 0.0001 0.0128 1.0023 0.0023 0.0319

5. Application
In this section, we apply the NTSW model to two real-life datasets and evaluate and compare the

performance of four selected models: the four-parameter Weibull Exponentiated Weibull (WEW)
model, the four-parameter Generalized Exponentiated Weibull (GEM) model, the four-parameter
Kumarswammy Weibull (KWWEI) model, and the three-parameter Weibull Weibull (WW) model.
We assess and compare the performance of these models using several model selection criteria, in-
cluding the AIC (Akaike Information Criterion), CAIC (Consistent Akaike Information Criterion),
and BIC (Bayesian Information Criterion). Additionally, we employ goodness-of-fit criteria such
as the Anderson-Darling (AD) and KS statistics, along with the corresponding KS p-values. The
general guideline is that smaller values of the AD and KS statistics, AIC, CAIC, and BIC, as well as
larger values of the KS p-values, indicate a better fit of the corresponding model to the data.

Dataset I: This dataset consists of 100 observations measuring the amount of time clients wait
before receiving the desired service at a bank. The data was used in ZeinEldin et al., 2021. The
dataset is "0.8, 0.8, 1.3, 1.5, 1.8, 1.9, 1.9, 2.1, 2.6, 2.7, 2.9, 3.1, 3.2, 3.3, 3.5, 3.6, 4, 4.1, 4.2, 4.2, 4.3,
4.3, 4.4, 4.4, 4.6, 4.7, 4.7, 4.8, 4.9, 4.9, 5.0, 5.3, 5.5, 5.7, 5.7, 6.1, 6.2, 6.2, 6.2, 6.3, 6.7, 6.9, 7.1, 7.1,
7.1, 7.1, 7.4, 7.6, 7.7, 8, 8.2, 8.6, 8.6, 8.6, 8.8, 8.8, 8.9, 8.9, 9.5, 9.6, 9.7, 9.8, 10.7, 10.9, 11.0, 11.0,
11.1, 11.2, 11.2, 11.5, 11.9, 12.4, 12.5, 2.9, 13.0, 13.1, 13.3, 13.6, 13.7, 13.9, 14.1, 15.4, 15.4, 17.3,
17.3, 18.1, 18.2, 18.4, 18.9, 19.0, 19.9, 20.6, 21.3, 21.4, 21.9, 23, 27, 31.6, 33.1, 38.5"

Braz. J. Biom., v.43, e-43755, 2025. 11
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Dataset II: The second dataset consists of the lifetimes of 50 industrial devices that were sub-
jected to a life test at time zero, as reported by Aarset, 1987. The dataset is "0.1, 0.2, 1.0, 1.0, 1.0, 1.0,
1.0, 2.0, 3.0, 6.0,7.0, 11.0, 12.0, 18.0, 18.0,18.0, 18.0, 18.0, 21.0, 32.0,36.0, 40.0, 45.0, 45.0, 47.0,
50.0, 55.0, 60.0,63.0,63.0, 67.0, 67.0, 67.0, 67.0, 72.0, 75.0, 79.0, 82.0, 82.0,3.0, 84.0, 84.0, 84.0,
85.0, 85.0, 85.0, 85.0, 85.0, 86.0,86.0"

Table 3. The model parameters MLE estimates and information criteria for the dataset one

Model α θ λ β AIC CAIC BIC

WEW 98.07 9.850 0.0709 79.07 644.33 644.75.12 654.75
GEW 21.89 0.2842 1.5640 80.42 653.90 654.33 664.33
KWWEI 3.9069 94.36 0.4450 96.45 642.60 643.03 653.02
WW 100.00 - 0.0104 0.6762 642.65 642.90 650.47
NTSW - - 0.0174 1.3710 639.97 640.09 645.18

Table 4. The test results for the Goodness-of-fit for dataset one

Model A∗ W∗ KS KS p-value

WEW 0.4080 0.0653 0.0561 0.9080
GEW 0.9944 0.1409 0.0910 0.3784
KWWEI 0.3862 0.0625 0.0527 0.9443
WW 0.4421 0.0712 0.0610 0.8511
NTSW 0.2857 0.0456 0.0485 0.9727

Tables 3 and 4 show that the NTSW model has the lowest values for AIC, BIC, CAIC, A*, W*,
and K-S, with the highest P-value when compared to other alternative distributions. Based on these
results, it is concluded that the NTSW model is the most suitable for fitting the first dataset among all
the competing distributions. In summary, the NTSW distribution outperforms all other alternatives
and is recommended as a valuable alternative for statistical research.

Furthermore, Figure 7 shows the histogram and estimated densities, along with the empirical
cdf (ecdf ) and the estimated cdf of the fitted model for the first dataset. This clearly demonstrates
that the NTSW model is an appropriate and efficient model for the fitted pdf and cdf.

Figure 7. Application for data set 1.

Based on the findings from Tables 5 and 6, it is clear that the NTSW model exhibits the lowest
values for the selection criteria measures. Moreover, it demonstrates the highest P-value of KS
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Table 5. The model parameters MLE estimates and information criteria for the dataset two

Model α θ λ β AIC CAIC BIC

WEW 100.00 9.8589 0.0464 78.8770 490.33 491.22 497.98
GEW 24.0748 0.1539 0.3893 76.9698 521.9063 522.80 529.55
KWWEI 8.5240 102.7848 0.1555 106.1077 496.68 496.68 503.44
WW 4.3735 - 0.1419 1.1897 492.19 492.71 497.93
NTSW - - 0.0139 1.8981 486.90 487.16 490.73

Table 6. The test results for the Goodness-of-fit for dataset two

Model A∗ W∗ KS KS p-value

WEW 3.0244 0.4994 0.1943 0.0458
GEW 4.8405 0.8766 0.2357 0.0078
KWWEI 0.3519 0.5640 0.2073 0.0272
WW 3.5490 3.2737 0.1923 0.0495
NTSW 3.0059 0.4961 0.1775 0.0858

when compared to all other competing distributions. Therefore, we can confidently conclude that
the NTSW distribution is the most appropriate choice for fitting the second dataset, surpassing all
other competing distributions. Furthermore, as illustrated in Fig.8, the NTSW model accurately
represents both the fitted pdf and cdf, further solidifying its status as the optimal model for this
dataset.

Figure 8. Application for data set 2.

6. Conclusions
This article introduces the New Transformed Sine-G (NTS-G) family, a new family of proba-

bility distributions that extends the Sin-G family of continuous distributions. It derives the mathe-
matical properties of the model, including hazard and survival functions, moments, and the quan-
tile function. Model parameter estimation is conducted using the maximum likelihood method,
and a Monte Carlo simulation study evaluates the performance of this estimation, indicating that
the maximum likelihood estimates (MLEs) are consistent. Additionally, the article develops specific
sub-models based on the Weibull, Fréchet, and Kumaraswamy distributions. The application section
focuses on the new Transformed Sin Weibull (NTSW) distribution, highlighting its potential for
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analyzing and modeling two real-life data sets. The NTSW model demonstrates a superior ability
to fit these two lifetime data sets compared to four competing models, some of which have more
parameters.
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