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Abstract

In this article, specific statistical considerations are typically required in order to select the best model for fitting
cancer survival data. A new two-parameter distribution known as the New Mixture of Lomax and Gamma
Distribution (MLGD) is proposed in this article. Because of the unique way that the gamma and Lomax distributions
are mixed, this distribution is created as a special mixture of two distributions. Statistical properties, order statistics,
entropy, and reliability analysis are also derived. The maximum likelihood estimation method can be used to estimate
the parameters of the distribution. Lastly, a goodness-of-fit analysis is demonstrated on a set of data on cancer
survival. It is compared to the fit and shows that the new Lomax and gamma mixing distributions have more
flexibility than the other distributions.

Keywords: Mixture distribution; Reliability analysis; Moments; Order Statistics; Maximum likelihood Estimation.

1. Introduction

Medical research is mostly interested in studying the survival of cancer patients, as applied to
statistical distributions. The statistical distributions have been extensively utilized for analyzing
time-to-event data, also referred to as survival or reliability data, in different areas of applicability,
including medical science. In recent years, an impressive set of new statistical distributions has been
explored by statisticians. The necessity of developing an extended class of classical distribution is
analysis, biomedicine, reliability, insurance, and finance. Recently, many researchers have been
working in this area and have proposed new methods to develop improved probability distributions
with utility. A statistical study is frequently used, which extensively depends on the presumptive
probability model or distributions.

A Lomax et al. (1954) distribution RV X with a parameter a, 8 > 0 is described by its pdf,
which is defined as

a x\ —(a+1)
f(x’a’ﬁ)_E(l-l_E) ,X>O,(Z,ﬁ>0

Considering the gamma [17] distribution with parameters a« = 3,and [ the pdf can be defined as

1
flx;a) =§a3x2 e ™ x>0,a>0
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The concept of a finite mixture of probabilities was pioneered by Newcomb (1886) as a
model for outliers. Weldon (1892) provided a mixture technique for analyzing crab morphometric
data. Pearson (1894) introduced a statistical model using finite mixtures of normal distributions and
also estimated the parameters of the mixture. Fisher (1934) introduced the concept of a weighted
mixture of outcomes and developed the Sib method. He applied this method for analyzing medical,
biological, and agricultural sciences data with randomly biassed samples. Teichroew (1957)
considered the mixture of normal distributions with different variances and derived the marginal
distribution when the variances are assumed to follow the gamma distribution. He also obtained the
properties of the new distribution. Lindley (1958) introduced the fiducial distribution and Bayes
theorem. Rama Shanker (2015), has introduced a mixture of exponential (6) and gamma (2, 60)

distribution proposed a shanker distribution. Akash distribution is a two-component mixture of an
62 2

exponential distribution and gamma distribution with their mixing proportions 573 and 73

Shanker (2015). Proposed a Komal distribution with applications in survival analysis, Ramma
Shanker (2023), the combination of exponential (0) and gamma (2, 0) distribution with mixing

. 6(6+1) . .
proportions ————— d FTIVIwL Recently, Telee et al. (2024), introduced the modified Lomax

distribution properties and applications. Tahir et al. (2015), The Weibull Lomax distribution
properties and applications. Abiodun et al. (2022), introduced the On Maxwell-Lomax distribution
properties and applications.

This article is based on a new mixture of Lomax and Gamma distributions in order to create the
MLGD that was proposed. For the remainder of this research work, the presented (pdf) and (cdf)
functions of the proposed distribution, together with some of its properties, provide an approach to
the maximum likelihood estimators for estimating the model parameters. Finally, the results of
fitting the caner survival data with MLGD also show that the other well-known distributions.
Throughout this research, the statistical programming language R was used for all computations.

2. New Mixture of MLGD Distribution
In this section introduces the MLGD distribution, which is a new distribution created by
combining two existing distributions. Let X be a random variable with a mixed distribution. Its

density function (pdf) f(x), is expressed as follows:
k

) =) wifi®)
i=1
fi(x),i =1,2, ..., k probability density function for all i
w;, i =1, ...,k denote mixing proportions that are non-negative and Y'¥_, w; = 1.
The fi(x) ~gamma (a = 3,4 ) and f,(x) ~ Lomax (a, #) two independents random variables with

%and ﬁ respectively. Then, the density function of the mixed distribution X is given by.
2

a (1 x\~@D a?p
. — (= (1+Z — - 2.1
f(x; a,B) ,3+1<,3( +,3> + S x"e >,x>0,a>0,ﬁ>0 (2.1)
The function defined in Eq. (2.1) represents a probability density function pdf of the new mixture of

Lomax and Gamma distributions, denoted as the (MLGD) f(x; a,B), for all x > 0
2

® a (1 x\~@D a?p
f(x,a,ﬁ) —jo m(ﬁ(li‘ﬁ) +TX e >dx (2.2)
Integration, using the substitution method in Eq. (2.2)

X du="% then dx = dup
—,du =—,then dx =du
B B

Let’s, make a substitution to simplify the integral in Eq. (2.2)

u=1+
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fsap) = 5o (2 +5)

,8+1E a

a (f+1
f(x;a'ﬁ):ﬁ+1< a)
fOsa,p)=1

The cumulative distribution function cdf of new mixture of Lomax and Gamma distributions is
defined as

_ a1 z\~(et)  o2p o
F(x; a,ﬁ)—ﬁ+1.[; <E<1+E) +Tzze >dz x=0,a,>0 (2.3)

First, term integration
X

Flx a,B) = fo %(1+%)_(a+1) dz (2.4)

Integration using the substitution method
Let’s assuming,

z dz
u=1+4— then, du =—,or dz = duf

B B

X
Then, z=0, u=1land z = x, u=1+E

Substituting this back into the integral in Eq. (2.4), we have

X -
1- (1 + /7)
F(x; a,B) = 1 " (2.5)
Second term integration
aZB X
F(x; a,pB) = Tf z2e 9% dz (2.6)
0

Using, the integration by substitution method in Eq. (2.6)
By letting, u = z2, and dv = e~%7,
Simplifying this, we get

F(x; a,B) = %(1 - <<a72x + 1> ax + 1) e‘“x> (2.7)

Let's add these integrals together in Egs. (2.5) and (2.7).
1 x\ "% ax —ax
F(x; a,ﬁ)=m (,B+1)—<(1+E> +,8<(7+1)ax+1>e )
x\™% ax —ax
<1+F) +ﬁ<(7+1)ax+1>e

F(x; a,p) =1- 1 (2.8)
Then, using the following binomial series expansion in Eq. (2.8)
n .
(1+x)" = Z (]) x) (2.9)

j=0
Then, the cumulative distribution function cdf of the new mixture of Lomax and Gamma
distributions, denoted as the (MLGD) are obtained as
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Foo a,8)=1- (27) W/ () (%2)1:15 (F+1)ax+1)e=

, X2 0,a,p

>0 (2.10)

3. Reliability Analysis
This section will provide the reliability function, hazard function, reverse hazard function,
cumulative hazard function, odds rate, and mean residual function for the specified MLG
distribution.

3.1 Survival Function
The survival function of the MLG distribution is defined as

S(;a,B)=1—-F(x;a,p)

S 6 8) = /2?:0(—1)1' (a +j,' B 1) (%)J +p ((% + 1) ax + 1) e“") 1)

p+1

3.2 Hazard Rate Function
An important metric for describing life phenomena is the hazard rate function of the MLG

distribution, which is defined by. h(x) = _lf ;X(:f;)

1 X ~(atd) azﬁ 2 ,—ax
a <E (1 + F) + TX e

hx; a,f) = P Ty R (3.2)
20 (T F) (B 1) ax+ 1) e
B+1
3.3 Revers hazard rate
The Revers hazard rate of the MLG distribution is defined as

_ _f&xaB)

4B = o )
hT(x; ar )8)

—(a+1) 2
a<%(1+%) +#X2 e‘“") \|

= (3.3)

B+1)- (2;?‘;0(—1)1‘ (7 (%)j +8((F+1)ax+1) e-“X> /

3.4 Cumulative hazard function
The Cumulative hazard function of the MLG distribution is defined as

H(ga,B) =—In(1 —-F(x;a,B))
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/ Nio(=1) (a +§ - 1) (%)j + B ((% + 1) ax + 1) e‘“x\

H(x;a,B) =In| T /— 1) (3.4)

3.5 Odds rate function
The Odds rate function of the MLG distribution is defined as

_ _ F(x; a,B)
(x, auB) - F(X a, ﬁ)
J
[ e )
O(x;a,p) = 3.5
<Zj°0( 1)/ <a+]—1)<ﬁ> —I—,B((%—I— 1)ax+1>e‘“x> /
3.6 Mean Residual Life function
The mean residual life function of the MLG distribution is defined as
1 [ee]
M) = 5 f F(t a, B)dt — x
M(x; a, )

1
:'/1_3%[ (2;00( 1)J (“ﬂ_l)(ﬁ) +ﬁ((%+1)ax+1)e-ax>+ﬁl
l t —(a+1) azﬁ ~
< 1+ﬁ) + —t? “f>dt

\ <J, 3 ;

. (3.6)
First term integration

N

—(a+1)

M(x) = J:ot % (1 + E) dt 3.7)

Integration using the substitution method
By assuming, u =1+ é,then t=pw—1)anddt = fdu

Whent =x,u=1+= and x > o, u - ©

Substitute the limits ofﬁintegration and simplify the expressions in Eq. (3.7)
(5" (+5)
M(x;a,B) =B @+D + ~ (3.8)
Second term integration
M(x; a, B)
= azTﬁjoot?’ e %t dt (3.9)

X
Then, using the substitution method in Eq. (3.9)

du

By letting, u = at, thent = g and dt = —

Whent = x,u = ax and x = o, u > ©
The upper incomplete gamma function is defined as
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I'(s,x) = f t5~le~tdt
X
To solve this integral, we recognize that it resembles the form of the upper incomplete gamma function in
Eqg. (3.9)
pr(4,ax)
M(x: _ 1
(x;a,B) a2 (3.10)

Combine these integrals in Egs. (3.8) and (3.10), substituting in Eq. (3.6), and simplifying the expression
given by

x —a+1 x -a

oy 9B (”F) (”F) r(4,at)

M(x;a,B) = p+1 (a+1) + a + 2a2 (3.11)
So, the final result of the integral is
—a+1 -a
(1 + 5) (1 + 5)
B B r4, ax)
ap (a+1) + a T

M(x;a,B) = —-x (3.12)

Fzo(=1)7 (a +j: - 1) (%)] +B ((% + 1) ax + 1) e—ax

4, Probabilistic Properties

In this section, we derived the statistical properties, moments, the moment-generating
function, characteristic function, and r* moment for the new MLG distribution of the random
variable. Including the mean, variance, coefficient of variation, standard deviation, skewness,
kurtosis, and dispersion investigated.

4.1 Moments
The " moments of a RV X of the MLG distribution are defined as

E(X™) = ) = j x" f(x;a,B) d
0

* a (1 x\ (@t g2 ~
E(XT) = -I(; x" 'B n 1(5 (1 +E) +Tx2 e ax) dx (41)
E(XT) = fo 5 (1 +E> dx (4.2)

Then, integration using the substitution meth
Let assuming, u =1 + %, thenx = f(u— 1) and dx = Bdu

Whenx =0,u =1and x » oo,u »

Let’s make a substitution to simplify the integral in Eq. (4.2)

E(X") = f (Bu - 1))T u~ @D pdy

1
“u-1"
— 1
E(X") = 'Br+ fl Wdu (4.3)

Then, using the following binomial expansion in Eq. (4.3)
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a-2=> i (5) 48
j=0

Substituting this into the integral, Eq. (4.3), we get
T

E(Xr) — ﬁr+1 Z(_l)r—k (Z) floo uk ﬁdu
k=0

-
_ oy (MY (L
E(X") = ﬁr;< v+ () (=) (4.5)
oo _2
E(XT) = f #wz e~ dx (4.6)
0
Then, using the following gamma function is defined as in Eq. (4.6)
j x?le™PX dx = F(j
: sro+3)
r+
Combine these with Egs. (4.5) and (4.7), and the simplified expression becomes
T
1 r 1 ﬁF(T + 3)
N — r _1\r—k _
E(X)_,8+1<a’8 kz_o( 1 (k)( k—a)+ 2a” ) (4.8)

Where T'(.) Is the gamma function. Subsequently, the first moment (mean), second moment, third
moment, and fourth moment can be defined by substituting » = 1,2,3,4 in Eq. (4.8)

B i 1 <“;(_1)1_k (11) (_k i a) +2>

Simplifying this, we get

E(X) =

£ = mean = (3 o D) (4.9)
s = (w0 074 () () o )
s S () (29

Variance = 02 = E(X?) — (E(X))2

> =\ i 1 <“ﬁ i(_l)z_k (lzc) (‘ k i a) " g))

k=0

1 2
B . 1 3
_ (ﬁ 1 (a: ;(—1) k (D (_ — a) + E)) (4.10)

First term, Simplification in Eq. (4.10)

(oY o () (-2)+2)

B
B+ 1
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(o (@ s+ @) e+ O )+ )

B? 2a a 128
:(,8+1(1_1—a+a—2)+a2(,8+1))
Simplifying this, we get
(BB +1D) (220 +1-4a)\  128°(B+1)
- ( B+ 1)? ( (1-a)(a—2) ) T 2BG+ 1)2>

2
—2QRa*+1-4 12
__F (2a”+1-4a) (411)
B+1D2\ A-a)a—2) azf
Second terms, Simplification in Eq. (4.10)
1 2
_(_B 1-k (1 ( 1 ) 3
B ,8+1<aZ( D (k) k—a +a
2
_ B 1 1 1 1 3
B ,8+1<a<(0) 0—a+(1) 1—a>+a>>
2
(B -1 1 3
B ,6’+1<a(—a 1—a>+a>>
2
[ B (3-2a*-2a
“\p+1\ ae(l-a)
. p? (3 =2a? - 2a)?
S B+1D2\ (1 - a)?
Simplifying this, we get
B 8a® + 20a? — 24a + 9 112
(B +1)2 a* + a? — 2a3 (412)
Therefore, combining Egs. (4.11) and (4.12) and these results, we have
, B —2(2a% + 1 — 4a) L 12 8a3 4 20a? — 24a + 9 .
T2\ a-o@-2) " a’B ot + a? — 243 '
Do = B —22a?+1—-4a) N 12 8a3 + 20a? — 24a +9
TEri |\ A-w@-2 " af Ot al = 2a3
4,2 Coefficient of Variation
The coefficient of variation of the MLG distribution is defined as
/ (—2(2a2 +1-4a), 12 )- (8a3 +20a2 — 24a + 9)\
o\ | Q1-a)a—-2)  a?p at+ a? — 2a3 |
cv (ﬁ) - (3 —2ala + 1)) | (4.14)
a(l—a) /

4.3 Skewness
The skewness of the MLG distribution is defined as

Braz. J. Biom., v.43, e-43733, 2025.
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E(X3)
Sk(X) = /B = ———
(var(X))?
After simplification, we get
2 3a 3a a 60
R A ae e
skon =& b l-a 2-a 3-d) a | (4.15)
(—2(2a2 +1-4a) 12 ) 3 (80(3 +20a% — 24a + 9) 7/
1-a)a—-2)  a?p at+ a? — 2a3
4.4 Kurtosis
The kurtosis of the MLG distribution is defined as
E(X*%)
Ku(X) =p1=—""7
(var(X))
3 4a 6a 4a a 360 \
+1)3 (a/,?(—1+_—_+_—_>+4>
Ku(X):('B 3)| T—a 2—a'3—a 4—-a) « y (4.16)
B \ (—2(2a2 +1-4a) 12 ) B (8a3 4 20a? — 24a + 9)
(1—-a)(a—2) azP a*+ a? —2a3
4.5 Dispersion
The dispersion of the MLG distribution is defined as
Dispersion= %
/ —2(20* +1-4a) 12\ _ <8a3 +20a? — 24a + 9) \
B (1-a)(a—2) aZp a*+ a? —2a3
B (3 —a(a ¥ 1)) (417)
a(l—a)

4.6 Moment Generating Function
The moment generating function (MGF) of a RV X is denoted by My (t) of the MLG distribution is
defined as

My (t) = E(et*) = fooetx f(x;a,B) dx ,teR
0

* a (1 x\~@t)  q?p
My (t) = j et (— (1 +—) +—x? e—“X> dx (4.18)
X 0 B+1\p B 2
First term integration,
o=[%(1+3)"" (4.19)
My (t =f - (1 +—) dx 4.19
¥ o B\ B

Usina the substitution in Ea. (4.19)

Let assuming, u = 1 + =, which implies x = (u — 1)and dx = Bdu.
Then, x = 0,u = 1and8x—>00,u—>oo

Let’s make a substitution to simply the integral in Eq. (4.19)

o)

My (t) = J u~ @) othu=1) gy
1

Braz. J. Biom., v.43, e-43733, 2025. 9
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My (t) = Be"tﬁf u~(a+D) othu gy (4.20)
1
The Laplace transform of a function f(t)is given by in Eq. (4.20)
L(f®®) =F(s) = f e Stf(t) dt (4.21)

1
the Laplace transform of etAu~(a+DIn(w) with respect to u.

F(s) = L(etﬁu—(a+1) In(w) )
find F (s) using the definition of the Laplace transform

F(S) — f e~ Su et,Bu—(a+1)ln(u) du
0

1 I'a+2)
M) = ghe gy
I'(a+2) .
- P~ B
Mx (¢) G- p)z® (4.22)
Second term integration in Eq. (4.18)
0o 2
My (t) = f etx¥x2 e~ dx (4.22)
0
Substituting this back into the integral in Eq. (4.22)

e—(a—t)x

(a—t)
Let’s make a substitution to simplify the integral

By letting, u = x* and dv =—

a’p
Mx(t) = m (423)
Now, let’s add the integral in Eqgs. (4.22) and (4.23) together.
a a’p Fa+2)
— - ﬁ
My(0) = = ((a 5t o ) (4.24)

4.7 Characteristics Function
The characteristics function (CF) of a RV X, it is denoted by ¢ (t) and MLG distribution is
defined as

px(t) = E(e'X) = f e'™ f(x; a,B) dx
0
Px(t) = Mx(it)

a a’p I'(a+2) "
= —itp
240 B+1 <(a —it)? ' (s—itp)erz” ) (4:25)
5. Hormonic Mean
If Hy is the harmonic mean (HM) of the RV X, and MLG distribution is defined as
1
i = (5)
HM—fool ¢ 1<1+x)_(a+1)+“23 2 gmax | g (5.1)
. = . X ,8 11 ,3 ,B ) X- e X .
First term integration,
Joo . <1 X —(a+1) 4 (5 )
H.M = x~ —(1+—) ) X 2
0 B B

Using the substitution, u = 1 + % , which implies x = B(u — 1)and dx = Bdu.

10

Braz. J. Biom., v.43, e-43733, 2025.



Sakthivel & Pandiyan.
When, x = 0,u = 1 and x - oo, u - ©
Substituting the limits of integration and simplify the expression in Eq. (5.2)

1 [ee]
HM= Ef (u—1)"1 y~l@tgy (5.3)
1
Then, using the following geometric series is defined as
(1—x)1= z X (5.4)
j=0
So, the final expressions for the integral are
HM= ! i ! (5.5)
T B4a—) '
Second term integration
a’f (®
HM= T,f x? e % dx (5.6)
0

Using the integration by substitution method in Eq. (5.6)
u=xandu=x% dv=e %
Simplifying this, we get

H.M = g (5.7)

So, the final results of the integral are

HM=—2 lz;+£ (5.8)
p+i\pgla-p "2

6. Mean Deviation
The Mean deviation (MD) of the RV X, and MLG distribution is defined as

D) =E(X —ub
D) = j X —ul fO6a B)dx
0

u ©
W= -0 f@wapdi+ | G- fsap dr
0
Simplifying this, we get ’

u
D) = 2uF ) =2 [ x fxia ) d (6
0
Then,
u
PG = [ x f(xiap)dx
0
D) = fﬂ <1 (1+x)_(a+1) v _ax>d (6.2)
=—0-I1 x|= = —x“e x .
P+, T\B VTR 2
First term integration
1+ x —(a+1)
D =—j x(1+—) dx 6.3
W=7 5 (63)
Then, using the substitution in Eq. (6.3), u =1 + % , which implies x = f(u — 1)and dx = Bdu.
U

Then, x =0, u=1land x =y, u=1+E

Let’s make a substitution to simplify the integral in Eq. (6.3)

Braz. J. Biom., v.43, e-43733, 2025. 11
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(1+ )_a—1 (1 +%)_a+1—1 \

D(w) =B | . - o )

For the second term integration to simplify the expression
a’p (H
D(n) = TJ. x3 e % dx
0
Then, using the substitution method in Eg. (6.5)

By letting, u = x3, dv=e"**dx, then du=3x%dx, v=
Substituting this back into the integral, we have

2 3 1 3
D) =p <_ (%((lﬂ + 3) +E(‘u +E)>e—a# +?>

Combine result these, the simplified expression becomes

==

(6.4)

(6.5)
_l-ax
a

(6.6)

D(u)

)+[>’<( +1)au+1) -“#\ )

[ 5 2ats ) 2o (° +§ (s
< a(l —a) ) 1=
£< 1
1 -a -a+
B+ _a|/ (1+%) -1 +%_ (1+%) 1
a a a+1

\

7. Median

B+1

> (6.7)

(@WH;(H;))M)

J

The mean deviation from median of the RV X, and MLG distribution is defined as

D(M) = E(IX — M)
D(M) = f X — M| f(x; a, B)dx

D(M) —] M = )f(x a,B) dx+J (x = M)F(x; a, B) dx
Simplifying this, we get

D(M) =y—2f xf(x;aB)dx
Then, ’

D(M) =j x f(x;a,B) dx

0

a (M1 x\~@D a?p
D(M)—m]o X<E(1+E) +Tx e >dx

First term integration

1 M o\ —(a+D)
D(M)=—j x (1+—) dx

a Jo B
Integration, using the substitution in Eq. (7.3),

(7.1)

(7.2)

(7.3)

Let assuming, u = 1 4+ =, which implies x = B(u — 1) and dx = Bdu.

B

Braz. J. Biom., v.43, e-43733, 2025.
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when, x =0, u=1land x =M, u—1+—
Let’s make a substitution to simplify the 1ntegra1

/1+M_a—1 1+ R
b _

D(M):’Bl a a+1

\ (7.4)
:

For the second term integration to simplify the expression

aZ M
D(M) = Tﬁf x3 e™* dx (7.5)
0

By letting, u = x3, dv=e"**dx, then du=3x%dx, v= —%e‘“x
Substituting in Eq. (7.5), this back into the integral, we have

M? 3 1 3
D(M)=pB|- —(aM+3)+—(M+—) e~ ™M — (7.6)

2 a a a?

Therefore, combining the Egs. (7.4) and (7.6) results, we have

D(M) =

B 3—2a(a+1)
+ < a(l—a) >

p+1

—

(1+4)“ 1) (1+%)‘““_1\\|

+ —_
a a? a+1
- 2a (7.8)

- <M72(aM +3) +2(M +§))e‘““

8. Order Statistics

The probability density function pdf of the " order statistics of the new mixture of Lomax and
gamma distribution is derived. Let X;, X,, ..., X;, be a simple random sample from MLG distribution
with cdf and pdf given by (9) and (1), respectively. Let X(1.n) < X(2in) < *** < X(nup) denote the
order statistics defined from this sample. We now given the pdf of X,.,,, say f..,(x) of X,.,,, r
1,2, ...,n. The probability density function pdf of the new mixture of Lomax and gamma distribution
the rt" order statistics X,.,, ¥ = 1,2, ..., n is defined as

! r—1 n-r
fran(2) = 5= 1)?@ i Fxap) (1-Flap) fOGap),x>0ap>0 (8.1
Where F(.) and f(.) are given by (2.10) and (2.1) respectively,
n!
and L = G DI — )
frn=Zr(Fap)  (1-Fap)" fOap) (8.2)
Then, using the following binomial series expansion in Eq. (8.2)
(1-20=) () (83)
=0
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frn= 2 ) O (") Fram) " s a
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s=0i=0 j=0 k=0 [=0 m=0n=0 p=
i

j 0
(2 )'(1)"(1>m<<l+m>1na>”<a—f>1nﬂ)”xk+,+me_m-x
+1) \p/) \2 n! p!

a (1 x\~@ a?p o
ﬁ+1<ﬁ(1+ﬁ> +T"Ze>

Ly S S (T () )

N
<

frin

Il
R

~
~ |

.
—
3

s=0 i=0 j=0 k=0 'l=0 m=0n=0p=0
==y N A\ ([@+Emna)" (G=HmB)Y e | B4
! ( l )(m)< +1> <E> (E n! p! X e
104 1 X —(a+1) aZﬁ o
ﬁ+1</§(1+§) gy xe )

OIS
:

= i\l 1\ /1) ((+m)Ina)" (i —j)Inp)’ m—aix | (85)
2 (G e) () () e T e

(7 (1+x)_(a+1) +a2ﬁ Zem
B+1\B\" "B 2 © ¢
8.1 Quantile function

The quantile function of a distribution with cdf, F(x;a, ), is defined by q = F(x4; a,5),
where 0 < g < 1. Thus, the quantile function of MLG distribution is given by

zo(=1)/ (“ +j.' B 1) (%)J +B ((“2—" + 1) ax + 1) e~ ax
B+1

(8.6)

1-qg=

9. Entropies

In this section, we derived the Rényi entropy, and Tsallis entropy from the new MLG distribution.
It is well known that entropy and information can be considered measures of uncertainty or the
randomness of a probability distribution. It is applied in many fields, such as engineering, finance,
information theory, and biomedicine. The entropy functionals for probability distribution were
derived on the basis of a variational definition of uncertainty measure.

9.1 Rényi Entropy
Entropy is defined as a random variable X is a measure of the variation of the uncertainty. It
is used in many fields, such as engineering, statistical mechanics, finance, information theory,
biomedicine, and economics. The entropy measure is the Rényi of order which is defined as

Braz. J. Biom., v.43, e-43733, 2025.
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1 (o]
y=1_y10g<fo [f(x;a,ﬁ)]ydx> sy >0,y #1

o 1 | oo a 1 ) x —(a+1) aZﬁ ) e yd o1
y_l_yogj;) mE(-l-E) +Txe X ()

Using the following binomial series expansion in Eq. (9.1), we get

R

Z . .
@@+ =Y (]) @b 9.2)
j=0
Then, binomial series expansion and, simplify the expression in Eq. (9.1)
(1+x)" = Z (Z) xk 9.3)
k=0
© & K v=i
/( a )YZ ( 1)k((a+1)]+k—1)<1>1+ CZZ_,B \
1 B+1) £l k B 2

R, = 1 _ylog j=0 —0 . [ (9.4)

X j x2r=D+kg—aly-jx /

0
Then Eq. (9.4), simplify the mtegral usmg the gamma function is given
ks 2o\Y"J

" (a+1)]+k—1 T (a? \

[ RS0 G (=)
R, = log | (9.5

1—vy F(Z(y ])+k+1) /

r-7
((X(]/ ]))2 Y—Jj)+k+1

9.2 Tsallis Entropy

The Boltzmann-Gibbs (B-G) statistical properties initiated by Tsallis have received a great deal of
attention. This generalization of (B-G) statistics was first proposed by introducing the mathematical
expression of Tsallis entropy (Tsallis, 1988) for continuous random variables, which is defined as

1 [oe]
Ty=m<1—j0 [ f(a B)]Y dx) ;¥>0y#1

1 “( a (1/ x@D a2 \)
Ty—m<1—L <ﬁ+1<[_)) (1+[_?) +TX26 )) dx) (96)

Solving the integration and the simplified expression becomes in Eq. (9.6)
\I
/l

1 |/ {(ﬁ)y 2 Z (}/) (—1)* ((“ + 1)Jl'€+ k — 1) <%>f+" (QZTIB>V—J

h=y—1| 1~ LTy =) +k+1) |
k (a(y )2(]/ +k+1 /

9.7)

10. Stochastic Ordering

A crucial technique in reliability and finance for evaluating the relative performance of the models
is stochastic ordering. Let X and Y be two random variables of the new mixture of Lomax and gamma
distribution with pdf, cdf, and reliability functions f(x), f (y), F(x),F(y).S(x) = 1 — F(x),and F(y).

1- Likelihood ratio order (X <,z Y) if ];Xix jf:)) decreases in x

2- Stochastic order (X <gr V) if Fx(x; a, B) = Fy(x;1,8) V x

Braz. J. Biom., v.43, e-43733, 2025. 15
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3- Hazard rate order (X <yr Y) if hy(x;a,8) = hy(x;1,8) V x
4- Mean residual life order (X <pg, Y) if MRLx(x; a,8) < MRLy(x;1,86) V x
Prove that the mixture of Lomax and gamma distribution complies with the ordering with the highest
likelihood (the likelihood ratio ordering).
Assume that X and Y are two independent Random variables with probability distribution function of
the new mixture of Lomax and gamma distribution fy (x; a, g)and fy(x; 4, 8)If a < Aand § < B, then
fx(x; a, B)
fr(x; 4,6) )
a 1 x\~ a+1 2

m(g (1+5)  +5e )

A= (10.1)

A (1 x\"AD 25,
5—+1(3(1+S) txte )/

Therefore, the log-likelihood function is given in Eq. (10.1)

A=

§+1 (“+1) z
log[A] = log Ij& n 1))1 lﬁ 1 + +T'Bx e “xl
-(A+1) 2
—log l% (1 +§) ' +¥x e lxl (10.2)

Differentiating with respect to x, in Eq. (10.2)
_(@+D) ( z)"(“”) 2gp-ax _ OB 2, -ax
alog[A]_/ B 1+/3 + a“fe 5 X°e

Ox _k Il o\ -@r) 2
2(1+5 +——x% e
(5) +5
[_ (/1;'61) ( (1 + %>_(A+2)> + /’{266—Ax _ /i_SxZe—lx]\
_ T T — (10.3)
[5 e ] /

alog[

Hence, <0 ifa<ip<é.

XSLRY$XSHRY:XSMRL YandXSHR Y:XSST Y.

11. Bonferroni and Lorenz Curves

The Bonferroni and Lorenz curves have been obtained using the MLG distribution in this
section. The Bonferroni and Lorenz curve is a powerful tool in the analysis of distributions and has
applications in many fields, such as economies, insurance, income, reliability, and medicine. The
Bonferroni and Lorenz cures for a X be the random variable of a unit and f(x;a,B) be the
probability density function of x. f(x;a, 8)dx will be represented by the probability that a unit
selected at random is defined as

B()—ijq (@ B)dx and
p—pﬂox x;a,B)dx an

1 4
L) =5 | x foa prdx
HJo
Where, g = F~1(p); qel0,1]and u = E(X)

B B 3—2a(a+1)
H_E(X)_,B+1< a(l —a) >
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°B

) 1 (7 o« <1 x\~@D a?p

Bp=—jx —(1+—) +—x“e" )dx
prly  B+1\B B 2

First term integration

) 1 r4 xy\—(a@+1)

B(p) = —f X (1 + —) dx

P78 B

Using the substitution in Eq. (11.2), u = 1 + % , which implies x = f(u — 1)and dx = fdu.

Then, x =0, u=1and, x=gq, u=1+1

B

Substitute the limits of integration and simplify the expression.

q
_ l 1+F _ —(a+1)
B@) =3 fl B(u—1) u@ du

/ (1+%)_a+1—1 (1+%>_a—1 \

B(p)=ﬁk —a+1 * a /l

Second term integration

a’f (4
B(p) = —'Bf x3 e dx
2 Jo

Let, u=x3, dv=e"%dx, then du=3x%dx, v= —Ee‘“"

Substitution in Eq. (11.4), to simplify the integral
2 3 1 3
B@) = (- (L aq+3)+2(q+) |er+ 5
2 a a a?

Let's add these integrals in Egs, (11.3) and (11.5) substituting in Eq. (11.1), and simplify the expression is

(11.1)

(11.2)

(11.3)

(11.4)

(11.5)

B(p)
A T 1+9) -1 ) \
(1L W T S
_ (11.6)
3-2a(a+1)
p( a(l—a) )
L(p) = pB(p)
L(p)
1+9) 1+9) -1 )
N[ I Y [ O T
- (3 —2a(a + 1)) AL.7)
a(l—a)
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12. Estimation of Parameters
The MLG distribution parameter's maximum likelihood estimates and Fisher's information
matrix are provided in this section.

12.1 Maximum Likelihood Estimation (MLE) and Fisher’s Information Matrix
Consider x4, x,, x3, ..., X, be a random sample of size n from the new mixture of Lomax and
gamma distribution with parameter «, B the log-likelihood function, which is defined as

lw%xaM—IIﬂ%ﬂﬁ)

(a+1) 2
xl Q 2 ,—ax;
B+1< ( ,8) + S Xi e (12.1)
Then, the log-likelihood function is given in Eq. (12.1)
I 1 X; —(a+1) az,B
£ =logL = nlog(a) —nlog(f + 1) + logz <E (1 + E) + Txlz e‘“"i> (12.2)
i=1

Differentiating with respect to a and g in Eq. (12.2)

In (1IB+ %) | (1 .

N —(a+1) 2
l) + afx? e”*i — %xs e~

Xi
B

ologl _ ()+Z; <%<1+%ymH{Fjﬁﬂeﬂﬂ> =0(1233)
. (4 1 X; (@+1) a_ z—axl>\
ooy S(BED i)

2
+; <% <1+9§) (a+1)+7.8 12 _axl>/_

The maximum likelihood estimate of the parameters for the MLG distribution is provided by
equations (12.3) and (12.4). The equation, however, cannot be solved analytically, so we used R
programming and a data set to solve it numerically.

The asymptotic normality results are used to derive the confidence interval. Given that if 1 = (&,, 8)
represents the MLE of A = (a, B), the results can be expressed as follows:
V(A= 1) = N, (0,171 (1)

In this case, I(1)represents Fisher's Information Matrix.
d%logL d%logL
E E
1 da? dadp
n

IW=-2 g d%logL g 0%logL
<6ﬁaa) ( ap? )/
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d%logL
doa?

In (1ﬁ+ %) (1 . %)—(am ¢ aftad et azTﬁx? o
& G )
()
ap?
(v
(5 (143) " + ) (% (1+25) " (o + %-2)) -
n <x_2 (1 +%)—(a+1) +a—2x-ze‘“xi>2
B 2™
+ Zl 1 x; —(a+1) azlg 2 (12'6)
- (B 3) " e
(62 log L>
dadf

X X
n (—‘Zln 1+% +axl?’e‘“xi(1—a:)>
_ B ( ,3) (12.7)

- . —(a+1) 2 2
=1 (% (1 + %) + %xiz e‘“xi) /

13. Applications

The Akaike Information Criteria (AIC), Bayesian Information Criteria (BIC), Akaike
Information Criteria Corrected (AICC), and —2log L.are used to compare the goodness of fit of the
fitted distribution.
The following formula can be used to determine AIC, BIC, AICC, and —2logL..
2k(k + 1)
n—k-1)
Where, k = number of parameters, n sample size and —2log L is the maximized value of loglikelihood
function. The MLEs of the parameters for all the datasets along with their SEs (in parentheses) and the

AIC =2k —2loglL, BIC = klogn — 2logL and AICC = AIC +
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corresponding goodness-of-fit criteria for all competing models are presented.
A basic statistical description of the dataset is given in Table 3. Figure 9, 10, and 11 indicate that Q-Q
and P-P plots are suitable models for the dataset.

X
Figure_1:Pdf plot of Mixture of Lomax and Gamma distribution
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Figure 2 cdf plot of a Mixture of Lomax and Gamma Distribution

Figure 1. The MLGD distribution plot of various parameter sets. First from the: Probability density function.

Figure 2. The MLGD distribution plot of various parameter sets. Second from the: Cumulative distribution function.
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Figure.3 Survival plot of a Mixture of Lomax and Gamma Distribution

Figure 3. The MLGD distribution plot of various parameter sets. Three from the: Survival function.
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Figures.4 Hazard plot of a Mixture of Lomax and Gamma Distribution

Figure 4. The MLGD distribution plot of various parameter sets. Four from the: Hazard function.
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Figure 5 Revers hazard plot of a Mixture of Lomax and Gamma Distribution

Figure 5. The MLGD distribution plot of various parameter sets. Five from the: Reverse hazard function.
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Figure .6 Cumulative hazard plot of a Mixture of Lomax and Gamma Distribution

Figure 6. The MLGD distribution plot of various parameter sets. Six from the: Cumulative hazard function.
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Figures.7 Odds rate plot of a Mixture of Lomax and Gamma distribution

Figure 7. The MLGD distribution plot of various parameter sets. Seven from the: Odds function.
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Figure.8 Quantile function plat of a Mixture of Lomax and Gamma Distribution

Figure 8. The MLGD distribution plot of various parameter sets. Eight from the: Quantile function.
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Figure 9: The density, Q-Q, P-P Plots of the cancer dataset 1.
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Table 1. This data includes the life expectancy (in years) of forty patients with leukemia, a blood malignancy, from
one of Saudi Arabia's Ministry of Health facilities, as published in [8]. This real information is

0.315 0.496 0.616 1.145 1.208 1.263 1.414 2.025 2.036 2.162
Data 2.211 2.370 2.532 2.693 2.805 2.910 2.912 3.192 3.263 3.348
Setl 3.427 3.499 3.534 3.767 3.751 3.858 3.986 4.049 4.244 4.323
4.381 4.392 4.397 4.647 4.753 4.929 4.973 5.074 5.381

Table 2. The data under consideration are the life times of 19 leukemia patients who were treated by a certain drug
[1]. The data are

Data
Set 2

1.013 1.034 1109 1226 1.509 1.533 1.563 1.716 1.929 1.965 2.061 2.344
2.626 2.778 2.951 3.413 4.118 5.136

Table 3. [10] Consider a simulated data represents the survival times (in days) of 73 patients who diagnosed with

acute bone cancer, as follows

2.546

Data
Set 3

0.09 0.76 1.81 1.10 3.72 0.72 2.49 1.00 0.53
31.61 0.60 0.20 1.61 1.88 0.70 1.36 0.43 3.16
4.93 11.07 1.63 1.39 4,54 3.12 86.01 1.92 0.92
1.16 2.26 0.20 0.94 1.82 3.99 1.46 2.75 1.38
1.86 2.68 1.76 0.67 1.29 1.56 2.83 0.71 1.48
0.66 0.65 2.36 1.29 13.75 0.67 3.70 0.76 3.63
2.65 0.95 2.30 2.57 0.61 3.39 1.56 1.29 9.94
1.42 4,18 1.37
Table 4. The statistical approach of the cancer patient’s dataset
Data set n Mean Median Variance  Std. Deviation Skewness  Kurtosis
1 40 3.13541 3.34800 1.894 1.376209 -.416 =727
2 19 2.18695 1.94700 1.193 1.092260 1.264 1.529
3 73 3.7045 1.5650 110.982 10.53482 6.984 53.036

0.66
1.57
4.04
2.76
241
0.68
1.67

Table 5. The value of MLE’s and goodness of fit criteria statistics for model selection based on cancer dataset 1

Distribution MLE SE -2logL AIC BIC AlCC

New  Mixture  of | @ = 9.5425 8.7111  147.7154 151.7154 155.0932 152.0397

Lomax and Gamma | § = 9.2663 3.1705

distribution

Lomax a =5319.59 8389.06 167.1379 171.1359 174.463 171.4602
B=1667.01 175.4877

Lindely 6 =0.2577 0.0616  156.5028 158.5028 160.1664 158.6080

Shanker 6 = 0.5497 0.0580  144.7945 155.9545 157.6181 156.0597

Rama 6 =11014 0.0805  143.3158 154.3158 147.1023 154.4210

Exponential 6 =0.3189 0.0510 167.1353 169.1353 170.7988 169.0405

Aradhana 6 = 0.7506 0.0710  153.1793 155.1793 156.8682 155.2845

Akash 6 = 0.7999 0.0701  152.7582 154.7582 156.4471 154.8634

Ishita 6 = 0.8047 0.0642  151.6347 153.6347 155.3235 153.7399

Quasi Lindly 6 =0.6376 0.1450  149.1123 153.1123 156.4394 153.4367
@ = 0.0010 0.5027

Quasi Aradhana 6 =0.6376 0.0817  203.1178 207.1178 210.5049 207.4421
a =0.0710 0.1588

Braz. J. Biom., v.43, e-43733, 2025.
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Table 6. The value of MLE’s and goodness of fit criteria statistics for model selection based on cancer dataset 2

Distribution MLE SE -2logL AIC BIC AICC

New Mixture of Lomax | & = 1.3389 0.1773 53.61945 57.61945 59.50835 58.3253

and Gamma | g =1091.97 6026.97

distribution

Lomax a = 2956.23 6851.60 68.6555 72.6555  74.5443  73.4055
B =6625.11 390.56

Weibull a = 2.1959 0.3589  56.0196 60.0196  62.0111 60.7692
B =0.4029 0.0435

Lindely 6 =0.7076 0.1200 64.02158 66.02158 66.96602 66.2438

Shanker 0 =0.7124 0.1077 63.08856 65.08856 66.033 65.3107

Rama 6 = 13784 0.1415 62.41991 64.41991 65.36435 64.6421

Exponential 6 = 0.4463 0.1023 68.65501  70.65501 71.59945 70.8772

Aradhana 6 = 0.9855 0.135 60.60053 62.60053 63.54497 62.8227

Akash 6 = 0.0297 0.1317 62.69158 64.69158 65.63602 64.9138

Ishita 6 = 0.9975 0.1134 62.74297 64.74297 65.68741 64.9651

Quasi Lindely 6 = 0.8923 0.1254  57.9066 61.9066 63.7955  62.6566
a = 0.0100 NaN

Quasi Aradhana 6 = 0.8923 0.1906  84.2462 88.2462 90.1351  88.9962
@ = 0.0100 0.4547

Quasi Sujatha 6 =1.1737 0.1244  55.9815 59.9815 61.8703  60.7315
a = 0.0100 NaN

Quasi Akash 6 =1.3713 0.1296  55.7074 59.7074  61.6989 60.4574
a = 0.0100 NaN

Table 7. The value of MLE’s and goodness of fit criteria statistics for model selection based on cancer dataset 3.

Distribution MLE SE -2logL AlIC BIC AICC

New Mixture of Lomax | @ = 1.6228 0.1508 277.3378 281.3378 285.9187 281.5092

and Gamma distribution B =4.2083 2.6092

Lomax a@ = 2.6256 0.8258 299.6024 303.6024 308.1834 303.7739
B =5.1372 2.0710

Weibull a@ = 0.7655 0.0567 322.8033 326.8033 331.3842 326.9748
B=03417  0.0556

Aradhana 6 = 0.6665 0.0458 405.5844 407.5844 409.8748 407.6407

Ishita 6 =0.7626 0.0449 4255164 427.5164 429.8069 427.5727

Shanker f =0.5124 0.0391 373.2109 375.2109 377.5014 375.2672

Rama d = 0.9900 0.0536 483.9594 485.9594 488.2499 486.0157

Exponential 6 =0.2763 0.0323 333.7534 335.7534 338.0438 335.8097

Lindley 6 = 0.4650 0.0394 365.8631 367.8631 370.1536 367.9294

Akash 6=07162  0.0465 419.7666 421.7666 424.051 421.8230

Quasi Lindley 0 = 2.6641 3.1188 339.179 343.179 347.7599 343.3505
a = 2.1482 1.1866

Quasi Shanker 6 = 0.4990 0.0398 383.0417 387.0417 391.6226 387.2132
a = 0.0017 0.0131

Quasi Arathana 6 = 0.4292 0.0472 485.3705 489.3705 493.9515 489.542
a=04112 0.1399

Quasi Sujath 6 =0.2827 0.0340 336.1475 340.1475 344.7284 340.319
a@ = 236.94 239.64

14. Results and Discussion

In comparison to the new mixture of Lomax and gamma distributions, Lindely, Shanker, Rama,
Exponential, Weibull, Lomax, Aradhana, Akash, Ishita, and Quasi Shanker, Quasi Lindely, Quasi
Arathana, and Quasi Sujatha distributions, it is evident from table 5, 6, and 7 results that the MLG
distribution has smaller AIC, BIC, and AICC values. This suggests that the new mixture distribution
fits the data better. Therefore, compared to the other distributions, the new mixture of Lomax and
gamma distributions (MLGD) provides a better fit.
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15. Conclusions

In this paper, a new two-parameter distribution is called a MLGD, which is a new mixture of
two known distributions, the Lomax and gamma distributions. Survival function and hazard function
have been discussed. Some statistical properties of the moments, the moments-generating function,
mean, variance, skewness, and kurtosis have been studied. A number of statistical characteristics of
the proposed distribution have been derived, including order statistics, stochastic ordering, entropies,
Bonferroni, and Lorenz curves, and the method of maximum likelihood estimation of the parameters
has been estimated. The statistical approach of the cancer dataset was analyzed. Moreover, the
derived distribution is applied to real data sets and compared with the other well-known distribution.
Show that the result of the new mixture of Lomax and Gamma distributions provides a better fit than
other well-known distributions.
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