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Abstract
A regression estimator for estimating the population mean of sensitive variable(s) in the presence of non-
response and measurement error simultaneously using two scrambling variables are introduced. Com-
parisons are made with the mean squared error of the proposed estimator with some of the commonly
used estimators i.e. Hansen and Hurwitz estimator, linear regression estimator and Diana et al. estima-
tor. Under large sample approximation, their biases and mean square errors are estimated. In addition,
an extensive simulation study with real and hypothetical population are also conducted to evaluate the
performance of proposed estimator which show that these estimators perform better than the other con-
sidered estimators. A graphically representations are also used to represent the simulation results.

Keywords: Sensitive variable(s); Measurement error; Non-response; Optional Randomized Response
Model; Bias; Mean square error.

1. Introduction
Equivocating direct questioning about intimate and confidential matters including gambling,

alcoholism, abortion, drug usage, tax evasion, illegal income and so on can cause respondents hu-
miliation or fear of societal condemnation. Even if interviewers make every effort to maintain con-
fidentially, interviewees may remain distrustful or reluctant to provide accurate responses. Survey
statisticians have established a lot of approaches to secure interviewee anonymity or, at the very
least, a high degree of survey, in order to reduce non-response and minimize under-reporting of
embarrassing, threatening or even convicting behaviors.
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To prevail trustworthy data on stigmatizing characteristics, Warner (1965) proposed an inter-
viewing strategy, known as Randomized response technique in which the respondents choose one
of the two complementary questions at random on a probability basis to reduce Social desirabil-
ity response bias without exposing respondents privacy. Greenberg et al. (1971) relied on Warner
(1965) study by gathering information on quantitative stigmatizing factors. Since then, numerous
authors, notably Eichhorn & Hayre (1983), Gupta et al. (2002), Gupta & Shabbir (2004), Gupta
et al. (2006), Hussain & Shabbir (2009), Zhang et al. (2018), Mushtaq & Amin (2020), Kumar &
Kour (2022), Kumar et al. (2023) and Kumar et al. (2024) and others have worked on quantitative
randomized response models. In addition to Social desirability response bias, there are several addi-
tional non-sampling flaws that can impact population mean estimate, including measurement error,
which is the discrepancy between the real value of the variable being monitored and its recorded
value. In the presence of measurement error, Khalil et al. (2018) and Khalil et al. (2021) investigated
mean estimate of sensitive variable using auxiliary information under optional randomized response
models.

One typical non-sampling problem that researchers must cope with is non-response. After the
first call Hansen & Hurwitz (1946) were among the first to advise collecting a sub-sample of non-
respondents, and then conducting a personal interview with this group to acquire information.
Kumar et al. (2011), Yaqub et al. (2017), Guha & Chandra (2019), Unal & Kadilar (2021), Kumar
& Kour (2023), Kumar et al. (2024) and Kumar et al. (2025) all have analyzed mean estimate in
the context of non-response by utilizing information on auxiliary variable. While Hansen & Hur-
witz (1946) methodology might provide additional information from face-to-face interview in the
second stage, it could also yield in social desirability response bias if the variable of interest is hy-
persensitive. In face-to-face interview, respondents are unwilling to give honest answers to such
questions. When we target the group of non-respondents in the second stage, we might utilize
randomized response technique to mitigate the social desirability response bias caused by sensitive
questions. Diana et al. (2014), Gupta et al. (2018) and others used scrambles response to answer the
sensitive questions directly.

Taking motivation from the earlier research on optional randomized response models, the present
study addresses a hybrid regression estimator for the estimation of sensitive variable by utilizing
optional randomized response models in the presence of non-response and measurement error si-
multaneously. The paper is organized as follows: section 2 discusses a optional randomized response
technique, while ections 3 examine revised Hansen & Hurwitz (1946) technique and existing es-
timators for the estimation of sensitive variables using the ORRT model. In section 4, there are
existing scrambled models. The proposed scrambled estimator and its properties are explored in
section 5. Simulation study with hypothetical and real population are presented in section 6 and
7, where conditions are identified under which the proposed estimator outperforms existing ones.
Finally, Section 8 offers concluding remarks.

2. Optional Randomized Response Technique
Consider Y and X be positively correlated sensitive variable(s) with unknown mean Ȳ and X̄,

and unknown variance S2
y and S2

x. Let S1 and S2 be two scrambling variables with mean S̄1 and S̄2,
and known variances S2

S1
and S2

S2
, respectively. Let W represents the probability that the respon-

dent consider the question sensitive. If the respondent thinks the question is sensitive, he or she is
requested to report a scrambled response for study and auxiliary variable (X, Y) otherwise a valid
response reported.

A basic additive randomized response model with Y + S2 as the scrambled response (as in Gupta
et al. (2012)) or a more general randomized response model with S1Y + S2 as the scrambled response
(as in Diana & Perri (2011)). If Var(S1) = 0 and E(S1) = 1 then the simple additive model is a special
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instance of the second model. The basic additive approach is more efficient, but the general model
provides better privacy, according to Khalil et al. (2018).

On the other hand, the generalized randomized response model performs better when we use
Gupta et al. (2018) combined measure of efficiency and privacy i.e γ = Var(Z1)

Γ , where Z1 is the
scrambled response and Γ = E(Z1 – Y)2 is the privacy level for the same model, as provided by Yan
et al. (2008). It should be noted that the model with a smaller value is preferable because it indicates
either a higher level of privacy or a lower value of Var(ŷ), or both. It should be noted that

γadditiveRRT = 1 +
S2

y

S2
S2

> 1 +
S2

y

S2
S2

+ S2
S1

(ȳ + S2y )
= γgeneralRRT (1)

As a result, while dealing with the general randomized response model, the scrambling variable
S1 will reduce model efficiency while increasing privacy. Overall, the general model outperforms
the specific approach in terms of efficiency and privacy. Therefore, in this investigation, one will
utilize the general scrambling model. The optional version of model Z1 = S1Y + S2 is given by

Z1 =

{
Y with probability 1 – W
S1Y + S2 with probability W ,

(2)

where S1 and S2 follows Normal distribution with mean (1, 0) and variances (S2
S1

, S2
S2

) i.e. S1 ∼
N(1, S2

S1
) and S2 ∼ N(0, S2

S2
). The mean and variance of Z1 are given by

E(Z1) = E(Y)(1 – W) + E(S1Y + S2)W = E(Y)
and Var(Z1) = E(Z2

1) – E2(Z1) = S2
y + S2

S2
W + S2

S1
(S2

y + Ȳ2)W .
From here, the randomized linear model is given as Z1 = (S1Y + S2)J + Y(1 – J ), where J ∼

Bernoulli(W) with E(J ) = W , Var(J ) = W(1 – W) and E(J 2) = Var(J ) + E2(J ) = W . And the
expectation and variance of randomized mechanism is ER(Z1) = (S̄1W + 1 – W)Y + S̄2W and
VR(Z1) = (Y2S2

S1
+ S2

S2
)W .

Since the variance of Z1 increases as W increases, the optional randomized response model is
obviously more efficient than the non-optional randomized response model. The randomized re-
sponse model becomes non-optional when W = 1.
In present research, the auxiliary variable X to be a sensitive variable as well. For illustration, if in-
come (Y) is a sensitive variable, but investments and expenditure (X) must also be sensitive variables.
As a result, the general scrambling model for auxiliary variable is given as

Z2 =

{
X with probability 1 – W
S1X + S2 with probability W ,

(3)

where S1 ∼ N(1, S2
S1

), S2 ∼ N(0, S2
S2

) and W denotes the probability that a respondent find the
question sensitive. The mean and variance of Z2 are given by

E(Z2) = E(X)(1 – W) + E(S1X + S2)W = E(X)
and Var(Z2) = E(Z2

2) – E2(Z2) = S2
x + S2

S2
W + S2

S1
(S2

x + X̄2)W .
Similarly, the randomized linear model can be written as Z2 = (S1X + S2)J + X(1 – J ), where

J ∼ Bernoulli(W) with E(J ) = W , Var(J ) = W(1 – W) and E(J 2) = Var(J ) + E2(J ) = W . And
the expectation and variance of randomized mechanism is ER(Z2) = (S̄1W + 1 – W)X + S̄2W and
VR(Z2) = (X2S2

S1
+ S2

S2
)W .

The optional randomized response model is clearly more efficient than the non-optional ran-
domized response model, as the variance of Z2 increases with W increases. When W = 1, the
randomized response model becomes non-optional.
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3. Revised Hansen & Hurwitz (1946) Technique
Consider ξ = ξ1, ξ2, ..., ξN be a finite population of size N and a random sample without re-

placement of size n is drawn from this population. Then only n1 units provide a response on the first
call and remaining n2 = n – n1 units do not respond. A sub sample of size ns = n2

k ; (k > 1) is taken
from the n2 non-responding units. Hansen & Hurwitz (1946) used mail survey at the first attempt
and used face-to-face interview at the second call.

Let Ȳ =
∑N

i=1 yi
N and S2

y =
∑N

i=1(yi–Ȳ)2
N–1 be the population mean and variance of the study variable

Y. Let Ȳ(1) =
∑N1

i=1 yi
N1

and S2
y(1)

=
∑N1

i=1 (yi–Ȳ(1))2

N1–1 respectively, be the population mean and variance

of respondent group of size N1, Ȳ(2) =
∑N2

i=1 yi
N2

and S2
y(2)

=
∑N2

i=1 (yi–Ȳ(2))2

N2–1 be the population mean

and variance of non-respondent group of size N2. Let X̄ =
∑N

i=1 xi
N and S2

x =
∑N

i=1(xi–X̄)2
N–1 be the

population mean and variance of the study variable X. Let X̄ =
∑N1

i=1 xi
N1

and S2
X(1)

=
∑N1

i=1 (xi–X̄(1))2

N1–1

be the population mean and variance of respondent group of size N1, X̄(2) =
∑N2

i=1 yi
N2

and S2
X(2)

=∑N2
i=1 (xi–X̄(2))2

N2–1 be the population mean and variance of non-respondent group of size N2.
The overall population mean of study variable is given by

Ȳ = W1Ȳ(1) + W2Ȳ(2), (4)

where W1 = N1
N and W2 = N2

N .

Let ȳ1 =
∑N1

i=i yi
n1

be the sample mean for the response group, and ȳ2 =
∑N2

i=i yi
n2

be the sample mean
for non-response group. It is indeed worthy to note that ȳ1 and ȳ2 are unbiased estimators of Y1
and Y2, respectively.

Hansen & Hurwitz (1946) suggested an unbiased population mean estimator given by

ȳ = w1ȳ1 + w2ȳ2s (5)

where w1 = n1
n and w2 = n2

n .
The variance of ȳ is given by

Var(ȳ) =
(

N – n
Nn

)
S2

y +
W2(k – 1)

n
S2

y(2) (6)

In the second phase of the Hansen & Hurwitz (1946) process, when there is face-to-face interview
of sub-sampled units of non-respondents in first phase, one provide the respondents the chance
to scramble their response using optional randomized response models to motivate respondents to
answer a sensitive question honestly. In this instance, a modified Hansen and Hurwitz procedure
by assuming that in the first phase, the respondent group provides direct responses, and then in the
second phase, the optional randomized response model is utilized to collect responses from a sample
of non-respondents.

Let ŷi denote a transformation of the randomized response on the ith unit, the expectation of
which is the true response yi under the randomization mechanism and is given by

ŷi =
z1i – S̄2W

S̄1W + 1 – W
(7)

with
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ER(ŷi) = yi

and

VR(ŷi) = VR(z1i)
(S̄1W+1–W)2 =

(y2
i S2

S1
+S2

S2
)W

(S̄1W+1–W)2 = τ1i

On the other hand, assume x̂i denote a transformation of the randomized response on the ith unit,
the expectation of which is the true response xi under the mechanism and is given by

x̂i =
z2i – S̄2W

S̄1W + 1 – W
(8)

with

ER(x̂i) = xi

and

VR(x̂i) = VR(z2i)
(S̄1W+1–W)2 =

(x2
i S2

S1
+S2

S2
)W

(S̄1W+1–W)2 = τ2i

On the basis of above discussion, a modified Hansen & Hurwitz (1946) estimator in the presence of
non-response by using optional randomized response technique as

ˆ̄y = w1ȳ1 + w2ˆ̄y2 (9)

ˆ̄x = w1x̄1 + w2ˆ̄x2 (10)

where ˆ̄y2 =
∑ns

i=1( ŷi
ns

) and ˆ̄x2 =
∑ns

i=1( x̂i
ns

).
It is easy to verify that

E(ˆ̄y) = Ȳ; E(ˆ̄x) = X̄ (11)

i.e. ˆ̄y and ˆ̄x are usual unbiased estimators.
The variance of ˆ̄y and ˆ̄x can be written as

V(ˆ̄y) = V(ȳ) +
W2k

n

∑N2
i=1 τ1i
N2

and

V(ˆ̄x) = V(x̄) +
W2k

n

∑N2
i=1 τ2i
N2

Since ȳ is the original Hansen & Hurwitz (1946) mean estimator, the variance of ˆ̄y is given by

Var(ˆ̄y) = λS2
y + λ∗S2

y(2) +
W2k

n

( (S2
y(2) + ȳ2

(2))S
2
S1

W + S2
S2

W

(S̄1W + 1 – W)2

)
(12)

As well x̄ is the original Hansen & Hurwitz (1946) mean estimator, the variance of ˆ̄x is given by

Var(ˆ̄x) = λS2
x + λ∗S2

x(2) +
W2k

n

( (S2
x(2) + x̄2

(2))S
2
S1

W + S2
S2

W

(S̄1W + 1 – W)2

)
(13)

where λ = (N–n)
Nn and λ∗ = (k–1)W2

n .
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In addition to non-response, measurement error is an important source of non-sampling errors
in a survey. Let the measurement error for the study variable (Y) and auxiliary variable (X) in the
population be given by Ui = yi –Yi and Vi = xi –Xi. Let the respective measurement error associated
with the sensitive variables (Z1 and Z2) in face-to-face interview phase be given by Pi = z1i – Z1i
and Qi = z2i – Z2i. These measurement errors are assumed to be random and uncorrelated with
mean zero and variances S2

u , S2
v , S2

p and S2
q , respectively.

Let us assume that the population mean of the sensitive auxiliary variable is known and non-
response happens on the both X and Y then some notations are given below

Ω̂∗
y =

∑n
i=1(yi – Ȳ); Ω̂∗

x =
∑n

i=1(xi – X̄);
Ω̂∗

u =
∑n1

i=1 Ui +
∑n2

i=1 Pi; Ω̂∗
v =

∑n
i=1 Vi +

∑n2
i–1 Qi

where Ui, Vi, Pi and Qi are measurement errors on Y, X, Z1 and Z2 respectively.
Now, the variance of ˆ̄y in the presence of measurement error is given by

Var(ˆ̄y∗) = λ(S2
y + S2

u) + λ∗(S2
y(2) + S2

p ) + κ1 (14)

Likewise, the variance of ˆ̄x in the presence of measurement error is given by

Var(ˆ̄x∗) = λ(S2
x + S2

v ) + λ∗(S2
x(2) + S2

q ) + κ2 (15)

where κ1 = W2k
n

(
(S2

y(2)+ȳ2
(2))S

2
S1

W+S2
S2

W
(S̄1W+1–W)2

)
; κ2 = W2k

n

(
(S2

x(2)+x̄2
(2))S

2
S1

W+S2
S2

W
(S̄1W+1–W)2

)
.

Next, consider a linear regression estimator of y on x when there is presence of non-response
and measurement error on y with full information on x as

T̂∗
reg = ȳ∗ + β̂yx(X̄ – x̄) (16)

where β̂yx = syx/s2x is a sample estimate of the population regression coefficient βyx = Syx/S2
x.

The mean squared error of T̂∗
reg is

MSE(T̂∗
reg) ∼= λ((S2

y + S2
u)(1 – ρ2

yx)) + λ∗(S2
y(2) + S2

p ) (17)

where ρ2
yx = S2

yx/S2
yS2

x.
Further, Diana et al. (2014) proposed a regression estimator, assuming X be a non-sensitive aux-

iliary variable and Y be a sensitive study variable in the presence of non-response and measurement
error is given as

T̂∗
D = ˆ̄y∗ + β̂∗∗∗

yx (X̄ – x̄∗) (18)

where β̂∗∗∗
yx = ˆsyx∗/s∗2

x is the estimate of the population regression coefficient βyx = Syx/S2
x.

The mean squared error of T̂∗
D is

MSE(T̂∗
D) ∼= λ((S2

y + S2
u)(1 – ρ2

yx)) + λ∗((S2
y(2) + S2

p ) + β2
yx(S2

x(2) + S2
v ) – 2βyxSyx(2)) +

k
nN

N2∑
i=1

ϕi (19)

In the next section, one can define four different scrambled models to check the efficiency of the
proposed models.
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4. Used Scrambled Models
In addition, a study focus on four well-known additive, multiplicative, and mixed nature models

to get an idea of how they perform in terms of efficiency and privacy. To demonstrate this, suppose
L1 and L2 are two mutually independent scrambling variables that are equally independent of Y.
Then, consider the following linear models as

• M1: Pollock & Bek (1976) additive model is Z = Y + L2.

• M2: Eichhorn & Hayre (1983) multiplicative model is Z = L1Y.

• M3: Saha (2008) mixed model is Z = L1(Y + L2).

• M4: Diana et al. (2013) model is Z = W(Y + L2) + (1 – W)L1Y.

Perhaps one may represent the variance using four different models in the presence of non-response
and measurement error simultaneously,

Var(T̂∗
D(M1)) = λ(S2

y + S2
u) + λ∗(S2

y(2) + S2
p ) +

kN2
nN

SS2 (20)

Var(T̂∗
D(M2)) = λ(S2

y + S2
u) + λ∗(S2

y(2) + S2
p ) +

kN2
nN

(S2
S1

(S2
S1

+ Ȳ2
2 )

S̄1
2

)
(21)

Var(T̂∗
D(M3)) = λ(S2

y + S2
u) + λ∗(S2

y(2) + S2
p ) +

kN2
nN

(S2
S1

(S2
S1

+ Ȳ2
2 ) + 2S̄2S2

S1
Ȳ2 + S2

S2
S̄1

2 + S2
S1

(S̄2
2 + S2

S2
)

S̄1
2

)
(22)

Var(T̂∗
D(M4)) = λ(S2

y + S2
u) + λ∗(S2

y(2) + S2
p ) +

kN2
nN

( (1 – W)2S2
S1

(S2
S1

+ Ȳ2
2 ) + W2S2

S1

(W + (1 – W)S̄1)2

)
(23)

5. Proposed Scrambled Estimator
In human surveys, collection of information on sensitive variables is very serious. Many times

this tends to increase the non-sampling errors i.e. non-response and measurement error. To over-
come the problem of increase in non-response and measurement error, Diana et al. (2014) modified
the Hansen & Hurwitz (1946) technique by collecting direct response from a respondent in the
first phase and by collecting scrambled responses at second phase. Further, they used non-sensitive
auxiliary variable to reduce the loss of efficiency due to scrambled responses. But, on the same
side, auxiliary information can be sensitive to the respondents which may increase the possibility
of non-response and measurement errors. So, an estimator for the estimation of population mean
of a sensitive variable in the presence of non-response and measurement error by using auxiliary
variable which may be sensitive in nature under optional randomized response models are proposed
and is given as

T̂∗
p = ˆ̄y∗ + b̂∗yx(X̄ – ˆ̄x∗) + b̂∗∗yx (X̄ – x̄) (24)

where b̂∗yx = ŝ∗yx /̂s∗2
x is the estimate of the population regression coefficient β̂∗

yx = Ŝ∗yx/Ŝ∗2
x .

and b̂∗∗yx = ŝyx/s2x is the estimate of the population regression coefficient β̂∗∗
yx = Ŝyx/S2

x.
To obtain the mean squared error of this estimator, we use models which are given in (2) and

(3), define ˆ̄y∗ = Ȳ(1+ ê∗0), ˆ̄x∗ = X̄(1+ ê∗1), x̄ = X̄(1+e2), ŝ∗2
x = Ŝ2

x(1+ ê∗3), ŝ∗yx = Ŝyx(1+ ê∗4), s2x = S2
x(1+e5),

ŝyx = Ŝyx(1 + ê6) such that E(̂e∗0) = E(̂e∗1) = E(e2) = E(̂e∗3) = E(̂e∗4) = E(e5) = E(̂e6) = 0;

Braz. J. Biom., v.43, e-43730, 2025. 7
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E(̂e∗2
0 ) = 1

Ȳ2

(
λ(S2

y + S2
u) + λ∗(S2

y(2) + S2
p ) + W2k

n

(
{(S2

y(2)+ȳ2
(2))S

2
S1

+S2
S2

}W
(S̄1W+1–W)2

))
;

E(̂e∗2
1 ) = 1

X̄2

(
λ(S2

x + S2
v ) + λ∗(S2

x(2) + S2
q ) + W2k

n

(
{(S2

x(2)+x̄2
(2))S

2
S1

+S2
S2

}W
(S̄1W+1–W)2

))
; E(e2

2) = 1
X̄2 λS2

x;

E(̂e∗0 ê∗1) = λρyx
SySx
ȲX̄ + λ∗ρyx(2)

SySx
ȲX̄ ; E(̂e∗1e2) = λρz2x

Sz2 Sx
Z̄2X̄ ; E(̂e∗0e2) = λρyx

SySx
ȲX̄

E(̂e∗1 ê∗3) = 1
X̄

(
λ
α̂∗

03
α̂∗

02
+ λ∗

α̂∗
03(2)

α̂∗
02(2)

)
; E(̂e∗1 ê∗4) = 1

X̄

(
λ
α̂∗

12
α̂∗

11
+ λ∗

α̂∗
12(2)

α̂∗
11(2)

)
E(e2e5) = 1

X̄

(
λ
µ∗

03
µ∗

02

)
and E(e2ê6) = 1

X̄

(
λ
µ∗

12
µ∗

11

)
α̂∗

rs =
∑N

i=1
(yi–Ȳ)r(xi–X̄)s

N–1 ; α̂∗
rs(2) =

∑N
i=1

(yi–Ȳ2)r(xi–X̄2)s
N2–1

µ∗pq =
∑N

i=1
(yi–Ȳ)p(xi–X̄)q

N–1 ; µ∗pq(2) =
∑N

i=1
(yi–Ȳ2)p(xi–X̄2)q

N2–1
Using Taylor’s approximation up to the first order, one can have

(T̂∗
p – Ȳ) = Ȳê∗0 – βyx (̂e∗1 – ê∗1 ê∗3 + ê∗1 ê∗4) – β∗

yx(e2 – e2ê∗5 + e2ê∗6 ) (25)

The bias and mean squared error of the proposed estimator to second order of approximation in the
presence of non-response and measurement error simultaneously, is given by

Bias(T̂∗
p ) = β̂∗

yx

((
λ
α̂∗

03
α̂∗

02
+ λ∗

α̂∗
03(2)

α̂∗
02(2)

)
–
(
λ
α̂∗

12
α̂∗

11
+ λ∗

α̂∗
12(2)

α̂∗
11(2)

))
+ β̂∗∗

yx

(
λ

(
µ∗03
µ∗02

–
µ∗12
µ∗11

))
(26)

and

MSE(T̂∗
p ) = λ

(
(S2

y + S2
u) + β̂∗2

yx(S2
x + S2

v ) – β̂∗∗2
yx S2

x – 2β̂∗
yxρyxSySx – 2β̂∗

yxβ̂
∗∗
yxρz2xSz2Sx–

2β̂∗∗
yxρz1xSz1Sx

)
+ λ∗

(
(S2

y(2) + S2
p ) + β̂∗2

yx(S2
x(2) + S2

q ) – 2β̂∗
yxρyx(2)Sy(2)Sx(2)

)
+κ1 + β̂∗2

yxκ2 (27)

By putting S2
u = S2

v = S2
p = S2

q = 0 in the above expression, we get the mean squared error of the
proposed scrambled estimator without measurement error which is given by

MSE(T̂∗
p ) = λ

(
S2

y + β̂∗2
yxS2

x – β̂∗∗2
yx S2

x – 2β̂∗
yxρyxSySx – 2β̂∗

yxβ̂
∗∗
yxρz2xSz2Sx – 2β̂∗∗

yxρz1xSz1Sx
)
+

λ∗
(
S2

y(2) + β̂∗2
yxS2

x(2) – 2β̂∗
yxρyx(2)Sy(2)Sx(2)

)
+ κ1 + β̂∗2

yxκ2 (28)

Consequently, as mentioned in section 4, the four models of additive, multiplicative and mixed
nature to have some idea that how they work in terms of efficiency and privacy are used and the
variance expressions of T̂∗

p are given as

Var(T̂∗
p(M1)) = σ +

kN2
nN

SS2 (29)

Var(T̂∗
p(M2)) = σ +

kN2
nN

(S2
S1
µ

S̄1
2

)
(30)

Var(T̂∗
p(M3)) = σ +

kN2
nN

(S2
S1
µ + 2S̄2S2

S1
Ȳ2 + S2

S2
S̄1

2 + S2
S1

(S̄2
2 + S2

S2
)

S̄1
2

)
(31)
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Var(T̂∗
p(M4)) = σ +

kN2
nN

( (1 – W)2S2
S1
µ + W2S2

S1

(W + (1 – W)S̄1)2

)
(32)

where µ = (S2
S1

+ Ȳ2
2 );

and σ = λ(S2
y + S2

u) + λ∗(S2
y(2) + S2

p ).

From (29) and (30), it is noted that Var(T̂∗
p(M2)) > Var(T̂∗

p(M1))

iff µ =
S2

S2

S2
S1

/S̄1
2 (33)

holds true.
The multiplicative model-based estimator T̂∗

p(M2) is a better choice in terms of privacy protection

than T̂∗
p(M1), although T̂∗

p(M1) definitely performs better in terms of efficiency. The relationship

between the model T̂∗
p(M4) with the models T̂∗

p(M1) and T̂∗
p(M2) is fascinating. If W = 0 in (32), then

Var(T̂∗
p(M4)) = Var(T̂∗

p(M2))

and for W = 1,

Var(T̂∗
p(M4)) = Var(T̂∗

p(M1))

Now, it is easy to verify that Var(T̂∗
p(M4)) achieves its minimum value for W0 = S2

S2
µ/(S̄S1S2

S2
+ S2

S1
µ)

from (29)-(32), it is easy to relate the performance of additive and multiplicative models with the
mixed models and it can be seen that variance of T̂∗

p(M4) in the optimal case (W0) is lower than others

if condition (33) is satisfied.

Var(T̂∗
p(M3)) > Var(T̂∗

p(M2)) > Var(T̂∗
p(M1)) ≥ Var(T̂∗

p(M4))

It is interesting to note that this relation is expressing both aspects, i.e. efficiency and privacy. For
biased estimators, we use mean squared errors in place of variances, therefore the following relation
of mean squared error’s holds for regression estimators as

MSE(T̂∗
p(M3)) > MSE(T̂∗

p(M2)) > MSE(T̂∗
p(M1)) ≥ MSE(T̂∗

p(M4)) (34)

Also, MSE(T̂∗
p ) < MSE(T̂∗

p(Mj)
) < MSE(T̂∗

reg) < MSE(T̂∗
D(Mj)

); j = 1, 2, 3, 4.

To confirm the behavior of the above relations, we perform a numerical comparison by using R
software.

6. Simulation Study
In this section, a simulation with particular focus on the performance of the proposed regression

estimator (T̂∗
p ) as compared to the regression estimator (T̂∗

reg) and Diana et al. (2014) estimator (T̂∗
D)

in the presence of non-response and measurement error.
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6.1 Numerical illustration using Hypothetical Population
A finite population of size N = 5, 000 is considered. A variable X ∼ N(0, 1) is generated from

normal distribution and variables Y which are related with X is defined as Y = N(0, 1) + X. The
scrambling variable S1 is taken from normal distribution with mean equal to 1 and variance 0.5 and
scrambling variable S2 is also taken from normal distribution with mean equal to 0 and variance 0.5.
Coding for simulation is done in R software, and the results are averaged over 5, 000 iterations.

Next, let us consider samples of size n = 700 using simple random sampling without replacement
and assume a response rate of 40% in the first phase. This means in the first phase, only 240(n1)
provide a response to the survey question and 460(n2) of them don’t respond. In the second phase, we
take another sample (ns = n2

k ) from the non-respondent group by using k = 1, 2, 3, 4, 5, respectively.
For various values of k, we analyze the behavior of the following estimators

T̂∗
reg, T̂∗

D(Mj)
, T̂∗

p , T̂∗
p(Mj)

; j = 1, 2, 3, 4.

The efficiency and privacy of unified measure ω as defined in Gupta et al. (2018) is given by

ω =
MSE(T̂∗

i )
Γ

; (35)

where Γ = E(Z1 – Y)2 is the privacy level of sensitive models and T∗
i = T̂∗

p , T̂∗
p(Mj)

; j=1, 2, 3, 4.

Table 1. Mean Squared Error of the suggested estimators for different values of k without measurement error.

k Estimator(s)
T̂∗

reg T̂∗
D(M1) T̂∗

D(M2) T̂∗
D(M3) T̂∗

p T̂∗
p(M1) T̂∗

p(M2) T̂∗
p(M3)

2 0.0055 3.5968 3.5963 3.5971 0.0025 0.0038 0.0037 0.0033
3 0.0093 5.3957 5.3952 5.3962 0.0058 0.0072 0.0070 0.0066
4 0.0133 7.1947 7.1943 7.1953 0.0094 0.0108 0.0107 0.0103
5 0.0160 8.9935 8.9921 8.9943 0.0125 0.0141 0.0139 0.0135

Table 2. Mean Squared Error of the suggested estimators for different values of k with measurement error.

k Estimator(s)
T̂∗

reg T̂∗
D(M1) T̂∗

D(M2) T̂∗
D(M3) T̂∗

p T̂∗
p(M1) T̂∗

p(M2) T̂∗
p(M3)

2 0.0037 3.5949 3.5943 3.5951 0.0020 0.0033 0.0031 0.0028
3 0.0063 5.3923 5.3917 5.3927 0.0054 0.0068 0.0066 0.0062
4 0.0093 7.1898 7.1893 7.1904 0.0092 0.0106 0.0105 0.0101
5 0.0104 8.9866 8.9852 8.9873 0.0100 0.0116 0.0114 0.0110

Table 1 and Table 2 represents the mean squared errors for (T̂∗
reg), (T̂∗

D(M1), T̂∗
D(M2), T̂∗

D(M3))

estimators and our suggested estimators (T̂∗
p(M1), T̂∗

p(M1), T̂∗
p(M2) and T̂∗

p(M3)) and from Table 1 and
Table 2, we envisaged that as the value of k increases from 2 to 5, the MSE of each estimator increases.
Moreover, Table 1 and Table 2 shows that the mean squared errors of Diana et al. (2014) estimator
i.e. T̂∗

D(M3) are the highest for all considered values of k and our suggested estimators i.e. T̂∗
p is lowest

among all considered estimators. Also, the proposed estimators T̂∗
p , T̂∗

p(M1), T̂∗
p(M2) and T̂∗

p(M3) are

having minimum mean squared error in compare to T̂∗
reg, T̂∗

D(M1), T̂∗
D(M2) and T̂∗

D(M3), respectively
in the presence and absence of measurement error.
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At last, the proposed estimator (T̂∗
p ) under non-response and measurement error using optional

randomized response models performing efficiently in comparison to the other estimators i.e. Re-
gression estimator (T̂∗

reg), Diana et al. (2014) estimators T̂∗
D(M1), T̂∗

D(M2) and T̂∗
D(M3), T̂∗

p(M1), T̂∗
p(M2)

and T̂∗
p(M3). Above results are shown graphically in Figure 1.

Figure 1. Mean Squared Error of the existing estimators and suggested estimators for different values of k in the presence
of non-response and measurement error.

Table 3. Mean Squared Error of the suggested estimators for different values of (W , k) with measurement error.

Estimator(s) W
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

for k = 2

T̂∗
D(M4) 3.5962 3.5963 3.5964 3.5964 3.5965 3.5966 3.5967 3.5967 3.5969 3.5970 3.5970

T̂∗
p(M4) 0.0033 0.0032 0.0033 0.0033 0.0034 0.0034 0.0034 0.0035 0.0035 0.0035 0.0038

T̂∗
p 0.0019 0.0020 0.0021 0.0022 0.0023 0.0024 0.0024 0.0025 0.0026 0.0027 0.0028

for k = 3

T̂∗
D(M4) 5.3955 5.3952 5.3953 5.3954 5.3954 5.3955 5.3956 5.3957 5.3959 5.3961 5.3968

T̂∗
p(M4) 0.0062 0.0063 0.0064 0.0065 0.0066 0.0066 0.0067 0.0068 0.0068 0.0069 0.0070

T∗
p 0.0049 0.0050 0.0051 0.0052 0.0053 0.0055 0.0056 0.0057 0.0058 0.0059 0.0061

for k = 4

T̂∗
D(M4) 7.1945 7.1943 7.1943 7.1944 7.1945 7.1946 7.1947 7.1948 7.1949 7.1951 7.1957

T̂∗
p(M4) 0.0093 0.0096 0.0098 0.0099 0.0100 0.0101 0.0102 0.0103 0.0104 0.0105 0.0105

T̂∗
p 0.0080 0.0084 0.0085 0.0087 0.0086 0.0088 0.0090 0.0091 0.0093 0.0096 0.0096

for k = 5

T̂∗
D(M4) 8.9931 8.9922 8.9923 8.9925 8.9926 8.9928 8.9931 8.9933 8.9936 8.9939 8.9952

T̂∗
p(M4) 0.0130 0.0125 0.0127 0.0129 0.0130 0.0132 0.0133 0.0135 0.0136 0.0137 0.0146

T̂∗
p 0.0117 0.0111 0.0113 0.0115 0.0117 0.0119 0.0121 0.0123 0.0125 0.0127 0.0137

Table 3 and 4 represents the mean squared error’s of the estimators for different values of (W , k)
with and without measurement error, respectively. From Table 3, the mean square error of Diana
et al. (2014) estimator (T̂∗

D(M4)) is highest among all other estimators and on the same side the mean
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Table 4. Mean Squared Error of the suggested estimators for different values of (W , k) without measurement error.

Estimator(s) W
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

for k = 2

T̂∗
D(M4) 3.5941 3.5944 3.5944 3.5945 3.5945 3.5946 3.5947 3.5948 3.5949 3.5950 3.5948

T̂∗
p(M4) 0.0019 0.0026 0.0027 0.0027 0.0028 0.0028 0.0028 0.0029 0.0029 0.0029 0.0023

T̂∗
p 0.0005 0.0015 0.0015 0.0016 0.0017 0.0018 0.0018 0.0019 0.0020 0.0020 0.0013

for k = 3

T̂∗
D(M4) 5.3918 5.3917 5.3918 5.3918 5.3919 5.3920 5.3921 5.3922 5.3924 5.3926 5.3930

T̂∗
p(M4) 0.0066 0.0058 0.0059 0.0060 0.0061 0.0062 0.0063 0.0063 0.0064 0.0064 0.0073

T̂∗
p 0.0053 0.0046 0.0047 0.0048 0.0049 0.0051 0.0052 0.0053 0.0054 0.0055 0.0064

for k = 4

T̂∗
D(M4) 7.1892 7.1893 7.1894 7.1894 7.1895 7.1896 7.1897 7.1898 7.1900 7.1902 7.1903

T̂∗
p(M4) 0.0097 0.0094 0.0096 0.0097 0.0098 0.0099 0.0100 0.0101 0.0102 0.0103 0.0108

T̂∗
p 0.0084 0.0082 0.0083 0.0085 0.0086 0.0088 0.0089 0.0091 0.0092 0.0094 0.0099

for k = 5

T̂∗
D(M4) 8.9865 8.9853 8.9854 8.9855 8.9857 8.9859 8.9861 8.9864 8.9866 8.9869 8.9884

T̂∗
p(M4) 0.0122 0.0100 0.0102 0.0104 0.0105 0.0107 0.0109 0.0110 0.0111 0.0113 0.0137

T̂∗
p 0.0109 0.0086 0.0088 0.0090 0.0092 0.0094 0.0096 0.0098 0.0100 0.0102 0.0128

Squared Error of proposed estimator (T̂∗
p ) is lowest among other existing estimators.

Table 3:

• For k = 2, 3, 4, W = 0; MSE of T̂∗
p is minimum and for k = 5, W = 0.1, MSE of T̂∗

p is minimum.

Table 4:

• For k = 2, W = 0, the MSE of T̂∗
p is minimum and for k = 3, 4, 5, W = 0.1, the MSE of T̂∗

p is
minimum.

For k = 2, 3, 4, 5, W = 0 to 1, the proposed estimator T̂∗
p outperforms the other estimators i.e.

T̂∗
D(M4) and T̂∗

p(M4) in terms of having minimum mean squared error. Also, with increase in k, the
mean squared error of all estimators increases.

Table 5. Privacy (ω) of the suggested models for different values of W .

Estimator(s) W
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

ω∗
p(M1) 0.0141 0.0134 0.0137 0.0140 0.0143 0.0146 0.0149 0.0151 0.0154 0.0157 0.0173

ω∗
p(M2) 0.0134 0.0127 0.0130 0.0133 0.0136 0.0139 0.0142 0.0145 0.0147 0.0150 0.0166

ω∗
p(M3) 0.0117 0.0113 0.0116 0.0119 0.0122 0.0125 0.0127 0.0130 0.0133 0.0136 0.0149

ω∗
p(M4) 0.0134 0.0127 0.0130 0.0132 0.0134 0.0135 0.0137 0.0138 0.0138 0.0139 0.0149

ω∗
p 0.0079 0.0082 0.0085 0.0087 0.0090 0.0093 0.0096 0.0099 0.0102 0.0105 0.0110

Table 5 indicates the privacy protection measure suggested by Gupta et al. (2018) which is given
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in (35). To see how this measure works in this study, we considered ω as (ω∗
p(M1), ω

∗
p(M2), ω

∗
p(M3),

ω∗
p(M4) and ω∗

p ) for five models in Table 5. W increases from 0 to 1, ω∗
p increases from 0.0079 to

0.0110 but first decrease for W = 0 to 1 and then increase for W = 0.2 to 1.0 other four models i.e.
(ω∗

p(M1), ω
∗
p(M2), ω

∗
p(M3), ω

∗
p(M4)).

Figure 2. ω (privacy) of the suggested estimators.

Moreover, Table 5 and figure 2 depicts that the proposed estimator is better if we examine the
performance of other estimators with respect to the unified measure (ω) of privacy and efficiency.

6.2 Numerical illustration using real population
The data set is based on Census 2011 literacy rates in India. The data is of N = 35 Indian states

and union territories and then a random sample is drawn from population of size n = 10. The literacy
rate is spread across the major parameters-Overall, Rural and Urban. Let y and x denotes the number
of literates (people) in 2001 and the total literacy rate (2001), respectively. The scrambling variables
S1 and S2 once again taken from normal distribution i.e., S1 ∼ N(0, 0.5) and S2 ∼ N(0, 0.5).

The results are shown in Table 6 and 7 for k = 2 and the probability level of sensitive variables,
i.e. W = 0.8 are used.

Table 6. Mean Squared Error of the suggested estimators for k = 2 and W = 0.8 with measurement error.

Estimator(s) Mean Squared Error

With M. E. Without M. E.

T̂∗
reg 3.2682 3.2160

T̂∗
D(M1) 2.5267 2.5135

T̂∗
D(M2) 2.3361 2.3348

T̂∗
D(M3) 4.2169 4.2156

T̂∗
D(M4) 4.3242 4.3111

T̂∗
p 0.0483 0.0419

T̂∗
p(M1) 1.3239 1.1176

T̂∗
p(M2) 1.1613 1.1549

T̂∗
p(M3) 1.1763 1.1699

T̂∗
p(M4) 1.7489 1.7425

Table 6 and 7 indicates the mean squared error and privacy protection measure using real data
set is based on Census 2011 literacy rates in India. From Table 6, the mean square error of Diana
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Table 7. Privacy (ω) of the suggested models for k = 2 and W = 0.8.

Estimator(s) Privacy (ω)

ω∗
p(M1) 0.0033

ω∗
p(M2) 0.0011

ω∗
p(M3) 0.0012

ω∗
p(M4) 0.0038

ω∗
p 0.0001

et al. (2014) estimator (T̂∗
D(M4)) is highest among all other estimators and on the same side the mean

Squared Error of proposed estimator (T̂∗
p ) is lowest among other existing estimators. Moreover, from

Table 7, the privacy protection measure of our proposed estimator (ω∗
p ) is lowest which indicates

that lesser the unified measure (i.e. Privacy and Efficiency) more efficient is our ORRT model.

7. Conclusions
An advanced optional randomized response technique is used in this study by making use of cor-

related quantitative scrambling variables. We have formulated a regression estimator for estimating
the population mean of sensitive variable(s) in the presence of non-response and measurement er-
ror simultaneously using optional randomized response models. The optional randomized response
model leads to better results than the other considered estimators in the presence of non-response
and measurement errors simultaneously. The properties of the proposed estimator have also been
obtained. The mean squared errors of the proposed estimator with other existing estimators i.e
linear regression estimator (T̂∗

reg) and Diana et al. (2014) estimator (T̂∗
D(Mj)

) has also been discussed

and the conditions have been obtained. To verify the theoretical results, we have performed simula-
tion using R. Tables and Figures shows that the proposed estimator is more efficient than the other
conventional estimators. Thus, we recommend that our proposed estimator performs efficiently in
a situation when the respondent finds the question more sensitive, always opts for more privacy.
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