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Abstract 

The purpose of this work is to implement and compare three types of Skew-Normal distributions together with 

the Normal submodel for the experimental error through a Bayesian nonlinear modeling of pepper phenotype 

growth. The posterior means of the parameters (α, β, γ) were shown to be invariant to the experimental error. 

The Sahu Skew-Normal error showed evidence of null asymmetry for all growth models. In general, all Skew-

Normal distributions presented the highest accuracy (1/σ2) in relation to the Normal error. The problematic 

points stand out for the computational cost in the millions of MCMC iterations and the limitations of the BUGS 

language. The Skew-Normal distribution of Azzalini and Fernandéz & Steel modeled the asymmetry of the data 

and provided the best goodness of fit (DIC) and the best precision (1/σ2) for the Gompertz and Von Bertalanffy 

model in relation to the Normal error. 
Keywords: Bayesian Inference; Longitudinal data; Skew-Normal.  
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1. Introduction 
Peppers of the Capsicum genus have stood out in Brazil due to their genetic diversity, 

widespread national consumption, and prominence in Brazilian olive growing (Nunes Ávila & 

Barbosa, 2019). 

In plant growth, some of the phenotypic characteristics follow an exponential growth until 

the maturation rate is reached. From this inflection point, the plant growth declines until it 

reaches an asymptotic value. The pattern of this type of growth is called sigmoid. Sigmoid 

models are non-linear, and the Normal distribution is generally used to adjust these models 

(Souza, 1998). Asymmetric experimental errors can also be used in plant height modeling 

(Mangueira et al., 2016; Guedes et al., 2014). 

Regarding the issue of normality, Pino (2014) asserts that although the Normal distribution is 

the default in several statistical procedures, in practice, it is more common for observations to be 

approximately normal. Some factors contribute to the extrapolation of the normality assumption, 
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such as the presence of outliers, data asymmetry, or support only in 𝑅+ in the variables. In terms 

of regression, Robust Regression can be used in the presence of outliers. Gelman et al. (2013) 

explain that the student’s t distribution because it has heavy tails, is more efficient than the 

Normal distribution in Bayesian regression. Regarding the asymmetry issue, Eloy et al. (2020) 

explain that several proposals for new distributions address the asymmetry and kurtosis of the 

data, such as Skew-Normal and Skew-Student t. 

The best-known Skew-Normal distribution is the one obtained by Azzalini, through an 

Azzalini transformation. The methodology adds a new asymmetry parameter (λ) to any 

distribution in the symmetric family. There are other versions, such as the Sahu Skew-Normal 

distribution and the Fernandez & Steel Skew-Normal distribution. As Ghaderinezhad et al. 

(2020) assert, the frequentist estimation of the Skew-Normal distribution faces a series of 

difficulties, such as singularity points, monotonic log-likelihood function for λ, and complex 

expressions for the estimation of λ using the method of moments or singular Fisher information 

matrix (Rossi & Santos, 2014). There are distributions whose transformation to Skew-

Symmetric models do not have analytical mathematical expressions for moments, expectations, 

and variances, such as the Azzalini Skew-Logistic distribution studied by Nadarajah (2009). In 

this context, Ghaderinezhad et al. (2020) recommend the Bayesian methodology to overcome 

the problems of frequentist estimation of the Skew Normal distribution. 

In linear models such as the Gauss-Markov Normal model, the significance tests, ANOVA, 

and confidence intervals are accurate, although they depend on a series of estimability 

conditions (Luna & Olinda, 2012). When considering an error distribution other than the Normal 

model, the significance tests generally depend on the asymptotic normality of the maximum 

likelihood (MV) estimators. In the case of nonlinear Normal models, the distribution of the MV 

and Gauss-Newton estimators also depend on the asymptotic theory (Cordeiro & Demétrio, 

2013), and the ANOVA in these cases is not valid because the decomposition of the sum of total 

squares into residuals and regression is not valid (Gujarati & Porter, 2012). The gain in the 

Bayesian methodology of non-linear models consists of the validity of the significance tests and 

credibility intervals without worrying about the sample size (Martins Filho et al. 2008) or the 

existence of a global maximum of the likelihood function. 

In this work, three versions of the Skew-Normal distribution will be implemented: the Skew-

Normal distribution of Azzalini (1985), which we will denote as SN1; the Skew-Normal 

distribution of Sahu et al. (2003), which we will denote as SN2, and the Skew-Normal 

distribution of Fernandéz & Steel (1998) which we will denote as SN3. 

The objective of implementing the Skew-Normal distributions in this work is to compare 

them with the Normal submodel, which we will denote as N, for the experimental error of the 

Bayesian description of the phenotypic growth of Capsicum. 

 

2. Materials and  Methods 
The database to be worked is composed of 8 accessions of Capsicum annuum L., being these, 

1 - Volcano Pepper; 2 - Cayenne Pepper; 3 - Peter Pepper; 4 - Spicy Pepper; 5 - Jamaica Yellow 

Pepper; 6 - Blocy bell pepper; 7 - Ikeda bell pepper; 8 - Ruby Giant bell pepper. The experiment 

was conducted in the Plant Science Department of the Federal University of Viçosa (UFV), 

located in the city of Viçosa, Minas Gerais, Brazil. (20º 45 South and 42º 51 West, average 

altitude of 650 m). As expressed in Figure 1, the phenotypic characteristics obtained from the 

experiment are the fruit length - FL (explanatory variable) as a function of the days after 

flowering - DAF (independent variable). 
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Figure 1. Scatter plot of accessions 1 to 8, plotting Fruit Length (FL) as a function of Days After Flowering (DAF). 

 

Like every niche in agricultural science, plant growth has a series of growth models widely 

used in modeling longitudinal data. According to Rosa et al. (2022), the goal is to find the one 

that best explains and fits the data from all the varieties of models. 

Koya and Goshu (2013) provide a complete review of the main growth models and their 

mathematical properties. 

Sigmoid models such as Velhust's and nonlinear models generally have parameter 

interpretability depending on the nature of the situation. The parameter α represents the 

asymptotic weight, that is, the maximum value that a given crop characteristic can reach, the 

parameter β generally has no biological value, and the parameter γ represents the growth rate. 

As explained by Fernandes et al. (2015), the most used Logistic, Gompertz, and Von 

Bertalanffy growth models in the literature owe their frequency of use to their popularity. The 

author also explains that these models are the furthest from linearity through the Battes curvature 

and do not have a biological interpretation of β. 

In terms of interpretability of the β parameter, adequate reparameterizations of the models 

allow the inflection point to be equivalent to β and not a function of β. In the most common 

Logistic model, the inflection point of the curve is represented by ( log 𝛽/γ, α/2), while in the 

reparameterized Logistic model studied by Fernandes et al. 

(2015):

𝜂(𝜃) =
𝛼

1+𝑒𝛾(𝛽−𝑥)
(1) 

The biological interpretation of the parameter β becomes the value at which the plant reaches 

maximum growth speed as shown in Figure 2.  
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Figure 2. The sigmoid curve of equation (1) with its main elements as an inflection point and asymptotic limit. 

 

Equations 2 and 3 represent other reparameterizations of the Gompertz (Fernandes et al., 

2015) and Von Bertalanffy (Fernandes et al., 2020) models with the same biological 

interpretation for 𝛽. 

𝜂(𝜃) = 𝛼exp{ − exp{ 𝛾(𝛽 − 𝑥)} (2) 

𝜂(𝜃) = 𝛼(1 −
exp{ 𝛾(𝛽 − 𝑥)}

3
)

3

(3) 

 

2.1 Nonlinear regression with asymmetric errors 

In the classical univariate nonlinear regression model, we have a nonlinear response function 

η(𝑥𝑖, θ) in the parameter vector θ, a vector of independent variables 𝑥, an explanatory variable 𝑦, and 

the experimental error 𝑒𝑖 ∼ 𝑁(0, σ
2) which is normally distributed. The nonlinear regression model 

can also be defined as in equation 4. 

𝑦
𝑖
= η(𝑥𝑖, θ) + σ𝑒𝑖 (4) 

This is equivalent to saying that 𝑌𝑖 ∼ 𝑁(η(𝑥𝑖, θ), σ
2), where the error 𝑒𝑖 is a random variable, 

then η(𝑥𝑖, θ) + σ𝑒𝑖 would be as if it were the location-scale transformation of this variable for 𝑌𝑖, 
where 𝑒𝑖 ∼ 𝑁(0,1). In normal nonlinear models we have that 𝐸(𝑌𝑖) = η(𝑥𝑖, θ) since the distribution 

of 𝑌𝑖 is symmetric and the location parameter μ is equal to η(𝑥𝑖, θ). 

When it comes to relaxing the assumption of normality of the Gaussian experimental error for 

the asymmetric error (Gaussian or not), it must be considered that in asymmetric distributions the 

expectation is not equal to the location parameter 𝐸(𝑌𝑖) ≠ μ, the more asymmetric the distribution, 

the further the location parameter moves from the expectation. Taking as an example a regression 

with SN3 errors (see section 2.5), such that 𝑒𝑖 ∼ 𝑆𝑁3(0, σ
2, λ), in this way we would have the 

distribution of 𝑌𝑖 ∼ 𝑆𝑁3(η(𝑥𝑖, θ), σ
2, λ), however it is verified that the distribution of each 𝑌𝑖 is not 

centered in η(𝑥𝑖, θ) since 𝐸(𝑌𝑖) = η(𝑥𝑖, θ)  + σ√
2

π

λ2−1

λ
, the higher λ, the greater the distance between 

𝐸(𝑌𝑖) and η(𝑥𝑖, θ), in the absence of asymmetry (λ = 1) the distortion is canceled. 

To correct this distortion let's do 𝐸(𝑌𝑖) = η(𝑥𝑖, θ), then μ + σ
λ2−1

λ
√
2

π
= η(𝑥𝑖, θ), the new value 

of μ will be:  
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μ = η(𝑥𝑖, θ) − σ
λ2 − 1

λ
√
2

π
 ↔ 𝑒𝑖 ∼ 𝑆𝑁3(−𝜎

𝜆2 − 1

𝜆
√
2

𝜋
, 𝜎2, 𝜆) 

 As can be seen in Figure 3, now using the SN1 case (see section 2.3), the greater the asymmetry, 

the further the location parameter moves from the center of mass of the distribution, so μ is located in 

the tails, and when the SN1 distribution undergoes correction then 𝐸(𝑌) = μ, and μ is located in the 

center of mass of the distribution. 

 

Figure 3. Plot of SN1 densities showing the relative displacement of the location parameter when using the two cases 

𝑆𝑁1(μ, σ2, λ) – without correction and 𝑆𝑁1(μ − σδ√2/π, σ2, λ) – with correction. 

Most skew distributions do not have mathematically tractable expressions for expectation. Due 

to these difficulties, only three Skew-Normal distributions were selected. 

The other distributions underwent the same procedure, Cancho et al. (2008) also uses such 

corrections in their Bayesian implementation of SN2 using 𝑒𝑖 ∼ 𝑆𝑁2(−λ√
2

π
, σ2, λ). 

2.2 Poisson zero’s trick 

In Bayesian inference, the likelihood function represents the information coming from the data to 

be analyzed. The specification of an arbitrary likelihood function can be done indirectly by means of 

the Poisson zero trick, or the Bernoulli trick; both approaches have the same effect, but Ntzoufras 

(2008) recommends using the Poisson zero’s trick. The Openbugs interface has the dloglik() function, 

which allows the use of likelihood functions that are not included in the package. 

The dloglik() function implements the Poisson zero trick. The likelihood function of a pdf 

(probability density function) 𝑓(𝑥𝑖, θ) can be rewritten: 

ℒ(𝜃|𝑦) =∏𝑓(𝑦
𝑖
, 𝜃)

𝑛

𝑖=1

 

ℒ(𝜃|𝑦) =∏𝑒log 𝑓(𝑦𝑖,𝜃)
𝑛

𝑖=1
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ℒ(𝜃|𝑦) =∏
𝑒−(− log 𝑓

(𝑦𝑖,𝜃)) (− log 𝑓 (𝑦
𝑖
, 𝜃))

0!

0
𝑛

𝑖=1

 

ℒ(𝜃|𝑦) =∏𝑃(𝑌|𝑦 = 0)

𝑛

𝑖=1

; 𝑌 ∼ Pois (𝜇 = − log 𝑓 (𝑦
𝑖
, 𝜃)) 

Considering 𝑙𝑖 = log 𝑓 (𝑦
𝑖
, θ), the quantity 𝑒−(−𝑙𝑖)(−𝑙𝑖)

0/0! is equivalent to the probability of 

𝑃(𝑌|𝑦 = 0) such that 𝑌 ∼ 𝑃𝑜𝑖𝑠(μ = −𝑙𝑖), to ensure that μ > 0, the likelihood function is multiplied 

by 𝑒−𝑛𝐾, in this way, 𝐾 must have a value such that 𝐾 > 𝑙𝑖.  

ℒ(𝜃|𝑦) =∏
𝑒−(𝐾−𝑙𝑖)(𝐾 − 𝑙𝑖)

0!

0𝑛

𝑖=1

 

ℒ(𝜃|𝑦) =∏𝑃(𝑌|𝑦 = 0)

𝑛

𝑖=1

; 𝑌 ∼ 𝑃𝑜𝑖𝑠(𝜇 = 𝐾 − 𝑙𝑖) 

the constants that 𝑙𝑖 may have been removed because they are absorbed by 𝐾. 

 

2.3 Azzalini's Skew-Normal Distribution (1985) 
The skewed Normal distribution was introduced by Azzalini in 1985. The new probability 

distribution is obtained by the transformation 𝑓(𝑥) = 2𝑔(𝑥)𝐺(λ𝑥) where 𝑔(. ) and 𝐺(. ) are, 

respectively, the pdf function and the cdf (cumulative density function) of a symmetric random 

variable in 𝑅 of X. With the introduction of a new skewness parameter λ, and with the location-scale 

transformation 𝑌 = μ + σ𝑋 where μ and σ are, respectively, the location and scale parameters, the 

Skew-Normal (SN) distribution is defined as in equation 5. 

𝑓
𝑌
(𝑦) =

2

𝜎
𝜙 (
𝑦 − 𝜇

𝜎
)Φ (𝜆

𝑦 − 𝜇

𝜎
) (5) 

where ϕ(. ) and Φ(. ) are, respectively, the pdf and cdf of the Normal distribution.  

In the case of the Normal distribution, the mean and standard deviation coincide with the location 

and scale parameters, in other asymmetric distributions, they are functions of these parameters. The 

asymmetry parameter (λ) denotes the orientation of the curve, values λ > 0 denote asymmetry to the 

right, λ < 0 asymmetry to the left, λ = 0 returns to the normal distribution which is symmetric as seen in 

Figure 4. 
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Figure 4. The Behavior of the Azzalini Skew-Normal Distribution by Varying the Skewness Parameter (λ values). 

 

One way to generate random numbers from a Skew-Normal distribution by means of pseudo-

realizations of a Normal is through the stochastic representation of Henze (1986). Given 𝑋0 ∼
𝑁(0,1) and 𝑋1 ∼ 𝑁(μ, σ

2) two independent Normal distributions, considering a parameter λ, then the 

variable Z: 

𝑍 =
𝜆

√1 + 𝜆2
|𝑋0| +

1

√1 + 𝜆2
𝑋1 (6) 

converges in distribution to 𝑆𝑁1(μ, σ2, λ), which denotes in this work the Skew-Normal distribution 

of Azzalini, based on the stochastic representation, the graphs of the SN1 distribution are constructed 

- which can also be constructed by the sn (version 2.2.1) package - which can be visualized in Figure 

4. 

The Expectation and Variance of a random variable 𝑌 ∼ 𝑆𝑁1(μ, σ, λ) are given by equations (7) 

and (8) respectively. 

𝐸(𝑌) = 𝜇 + 𝜎𝛿√
2

𝜋
(7) 

𝑉(𝑌) = 𝜎2 (1 −
2𝛿2

𝜋
) (8) 

where 𝛿 =
𝜆

√1+𝜆2
. 

In obtaining the likelihood function, a series of steps are followed: 

First step: μ is defined according to the procedures in section 2.1 μ = η(𝑥𝑖, θ) − σδ√
2

π
 

𝑓
𝑌
(𝑦) =

2

σ
ϕ

(

 
𝑦
𝑖
− η(𝑥𝑖, θ) + σδ√

2
π

σ

)

 Φ

(

 λ
𝑦
𝑖
− η(𝑥𝑖, θ) + σδ√

2
π

σ

)
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Second step: Obtain 𝑙𝑖 according to the procedures in section 2.2 

 

𝑙𝑖 = log 2 − log σ
2 − 0.5 log 2π − 0.5(

𝑦
𝑖
− η(𝑥𝑖, θ)

𝜎
+ δ√

2

π
)

2

+ logΦ(λ(
𝑦
𝑖
− η(𝑥𝑖, θ)

𝜎
+ δ√

2

π
)) 

 

Third step: Remove the constants and replace σ2 with the precision parameter τ such that τ = 1/σ2 
 

 

l𝑖 = log τ − 0.5((𝑦𝑖 − 𝜂(𝑥𝑖, 𝜃))√𝜏 + δ√
2

π
)

2

+ logΦ

(

 
 
λ((𝑦

𝑖
− 𝜂(𝑥𝑖, 𝜃))√𝜏 + δ√

2

π
)

)

 
 

(9) 

 

2.4 Skew-Normal Distribution of Sahu et al. (2003) 
 

In the work of Sahu et al. (2003), the authors derive new distributions by adding an Asymmetry 

parameter to the distributions that belong to the Elliptic class. The new multivariate Skew-Elliptical 

class is obtained through the conditioned argument method, based on the different density generators 

𝑔(𝑘), obtaining the Skew-Normal and Skew-t distributions of Sahu. The authors propose these 

distributions in modeling the asymmetry of the experimental error, instead of using data 

transformation methodologies, and assert that their implementation is easier than those of Fernandez 

& Steel (1998). Some advantages of the Skew-Normal distribution of Sahu include the easy 

implementation of MCMC and invariance to residual autocorrelation (De la Cruz & Branco, 2009). 

Another advantage, in the context of Bayesian regression, is the obtaining of known posterior 

distributions.  

The Skew-Normal distribution of Sahu et al. (2003) is given by: 

 

𝑓
𝑌
(𝑦) = 2𝜙(𝜇, 𝜎2 + 𝜆2)Φ(

𝜆

𝜎
×

𝑦 − 𝜇

√𝜎2 + 𝜆2
) (10) 

If Y is a random variable that follows the Skew-Normal distribution of Sahu et al. (2003), then 

𝑌 ∼ 𝑆𝑁2(μ, σ2, λ). In terms of skewness, as with SN1, the skewness parameter (λ) denotes the 

orientation of the curve, values λ > 0 denote right skewness, λ < 0 left skewness, λ = 0 null 

skewness and convergence to the Normal model. The behavior of SN2 can be visualized in Figure 5. 

 

 



Moura et al. 

 

           

9                                                                                                                               Braz. J. Biom., v.43, e-43726, 2025. 

 

 

 

Figure 5. Behavior of the Sahu Skew-Normal Distribution by Varying the Skewness Parameter (𝜆 values). 

 

A stochastic representation of the Sahu Skew-Normal distribution is, similar to the Azzalini 

distribution: 

𝑍
𝑑
→ 𝜆|𝑋0| + 𝑋1 (11) 

where 𝑋0 ∼ 𝑁(0,1) and 𝑋1 ∼ 𝑁(μ, σ
2) are independent, thus 𝑍 ∼ 𝑆𝑁2(μ, σ2, λ). Based on this 

stochastic representation, it is possible to compute figures of the distribution in question to evaluate 

its behavior, as shown in Figure 5. 

The Expectation and Variance of a random variable 𝑌 ∼ 𝑆𝑁2(μ, σ2, λ) are given, respectively, 

by equations (12) and (13). 

𝐸(𝑌) = 𝜇 + √
2

𝜋
λ (12) 

𝑉(𝑌) = 𝜎 + (1 −
2

𝜋
) 𝜆2 (13) 

 

 

For implementation of the likelihood function: 

 

First step: Define μ  

μ = η(𝑥𝑖, θ) − λ√
2

π
 

𝑓
𝑌
(𝑦) = 2ϕ(η(𝑥𝑖, θ) − λ√

2

π
, σ2 + λ2)Φ

(

 
λ

σ
×
𝑦 − η(𝑥𝑖, θ) + λ√

2
π

√σ2 + λ2

)
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Second step: Get 𝑙𝑖 

l𝑖 = log 2 − 0.5 log(σ
2 + λ2) − 0.5 log 2π − 0.5

(

 
𝑦 − η(𝑥𝑖, θ) + λ√

2
π

√σ2 + λ2

)

 

2

+ logΦ

(

 
λ

σ
×
𝑦 − η(𝑥𝑖, θ) + λ√

2
π

√σ2 + λ2

)

  

 

 

Third step: Remove the constants and make τ = 1/σ2 
 

l𝑖 = −0.5 log(τ
−1 + λ2) − 0.5

(

 
𝑦 − η(𝑥𝑖, θ) + λ√

2
π

√τ−1 + λ2

)

 

2

+ logΦ

(

 √τλ
𝑦 − η(𝑥𝑖, θ) + λ√

2
π

√τ−1 + λ2

)

 (14) 

 

 

2.5 Fernández & Steel (1998) Skew-Normal Distribution 

One way to obtain asymmetric probability distributions is through the Fernandéz & Steel 

methodology. In the work of Fernandes & Steel (1998) the authors proposed, as an application of the 

methodology, an asymmetric version of the student’s t distribution for the residual in a Bayesian 

implementation of a linear regression. The methodology consists of introducing an asymmetry 

parameter to any symmetric and unimodal continuous distribution, the transformation is given by: 

𝑓
𝑋
(𝑥) =

2

𝜆 + 𝜆−1
{𝑔 (

𝑥

𝜆
) 𝐼[0,+∞) + 𝑔(𝑥𝜆)𝐼(−∞,0)} (15) 

where λ is the skewness parameter and 𝑔(. ) is the density of a symmetric distribution such that 

𝑔(𝑥) = −𝑔(−𝑥).  

In the work of Castillo et al. (2011) the authors applied equation (15) to the Normal distribution 

and then applied a location-scale transformation obtaining the density:  

𝑓
𝑌
(𝑦) =

2𝜆

𝜎(1 + 𝜆2)
{𝜙 (𝜆

𝑦 − 𝜇

𝜎
) 𝐼(𝑦<𝜇) + 𝜙(

𝑦 − 𝜇

𝜆𝜎
) 𝐼(𝑦≥𝜇)} (16) 

such as 𝑌 ∼ 𝑆𝑁3(μ, σ2, λ) which represents the density of the Fernández & Steel Skew-Normal 

distribution. In terms of the asymmetry of this distribution, the asymmetry parameter (λ) denotes the 

orientation of the curve, values λ > 1 denote asymmetry to the right, 0 < λ < 1 asymmetry to the 

left, λ = 1 null asymmetry (convergence to the Normal distribution), this behavior can be verified in 

Figure 6 which was generated using the Skewt (v. 1.0) package. 
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Figure 6. Behavior of the Fernandez & Steel Skew-Normal Distribution by Varying the Skewness Parameter (𝜆 values). 

 

One of the inferential advantages of SN3 consists in the non-singularity of Fisher's expected 

information matrix for λ = 1 (SN1 is singular when λ = 0), which facilitates asymptotic inference 

(Castillo et al, 2011). Another advantage of SN3 consists in not using the cumulant distribution 𝐹(𝑥), 
which does not have analytical expressions for Normal and Student's t (Eloy et al, 2019). Castillo et 

al. (2011) demonstrate some properties of SN3 considering the r-th sample moment of Y, in which 

we obtain the Expectation and Variance of SN3 expressed by equations (17) and (18). 

𝐸(𝑌) = 𝜇 + 𝜎√
2

𝜋

𝜆2 − 1

𝜆
(17) 

𝑉(𝑌) = 𝜎2
(𝜋 − 2)𝜆6 + 2𝜆2(𝜆2 + 1) + 𝜋 − 2

𝜋𝜆2(1 + 𝜆2)
(18) 

 

In the implementation of the likelihood function: 

 

First step: Define μ 

μ = η(𝑥𝑖, θ) − σ
λ2 − 1

λ
√
2

π
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𝑓
𝑌
(𝑦) =

2λ

σ(1 + λ2)
{
 

 

ϕ

(

 
𝑦 − η(𝑥𝑖, θ) + σ

λ2 − 1
λ

√2
π

λσ

)

 𝐼(𝑦≥μ∗)

+ ϕ

(

 λ
𝑦 − η(𝑥𝑖, θ) + σ

λ2 − 1
λ

√2
π

σ

)

 𝐼(𝑦<μ∗)

}
 

 

 

where, μ ∗= 𝜂(𝑥𝑖, 𝜃) − 𝜎
𝜆2−1

𝜆
√
2

𝜋
 

 

Second step: Rewrite 𝑓
𝑌
(𝑦) as a function of the Heavside function 𝐻(𝑥) which in OpenBugs is 

represented by the Step function. 

𝑓
𝑌
(𝑦) =

2λ

σ(1 + λ2)
ϕ(λ

1−2𝐻(
𝑦𝑖−𝜂(𝑥𝑖,𝜃)

𝜎
+
λ2−1
λ
√2
π
) 𝑦

𝑖
− η(𝑥𝑖, θ)

σ
+
λ2 − 1

λ
√
2

π
) 

where,  

𝐻(
𝑦
𝑖
− 𝜂(𝑥𝑖, 𝜃)

𝜎
+
𝜆2 − 1

𝜆
√
2

𝜋
) ≔

{
 
 

 
 
1, 𝑦

𝑖
≥ 𝜂(𝑥𝑖, 𝜃) − 𝜎

𝜆2 − 1

𝜆
√
2

𝜋

0, 𝑦
𝑖
< 𝜂(𝑥𝑖, 𝜃) − 𝜎

𝜆2 − 1

𝜆
√
2

𝜋

 

Third step: Get 𝑙𝑖 

l𝑖 = log 2 + log λ − log σ − log(1 + λ2) − 0.5 log 2π − log λ
2𝐻(

𝑦𝑖−𝜂(𝑥𝑖,𝜃)

𝜎
+
𝜆2−1
𝜆

√2
𝜋
)−1

− log σ

− 0.5(λ
1−2𝐻(

𝑦𝑖−𝜂(𝑥𝑖,𝜃)

𝜎
+
𝜆2−1
𝜆

√2
𝜋
) 𝑦

𝑖
− 𝜂(𝑥𝑖, 𝜃)

𝜎
+
λ2 − 1

λ
√
2

π
)

2

 

Fourth step: Remove the constants and make 𝜏 = 1/𝜎2 

l𝑖 = log λ + log τ − log(1 + λ2) − log λ
2𝐻((𝑦𝑖−𝜂(𝑥𝑖,𝜃))√𝜏+

𝜆2−1
𝜆

√2
𝜋
)−1

− 0.5(λ
1−2𝐻((𝑦𝑖−𝜂(𝑥𝑖,𝜃))√𝜏+

𝜆2−1
𝜆

√2
𝜋
)

(𝑦
𝑖
− 𝜂(𝑥𝑖, 𝜃))√𝜏 +

λ2 − 1

λ
√
2

π
)

2

         (19) 

2.6 Implementation of empirical priors 

A priori is usually determined before accessing the data because it represents the researcher's 

prior knowledge or accumulated scientific knowledge about a given parameter. The artifice of 

determining a priori from the data set to be analyzed is called the empirical Bayesian approach, 
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however, it is still an approximation to the classical Bayesian approach (Carlin & Louis, 2008). 

One way to determine frequentist estimates for all 8 (see Figure 1) accessions with 3 different 

growth models is through nonlinear mixed models, in which it is possible to obtain estimates of the 

fixed and random effects in a single algorithm. Obtaining individual Gauss-Newton estimates for 

each combination is too laborious, and initial estimates for each case must be obtained. Since this is 

not the objective of this work, more details can be found in the work of Teixeira et al. (2023). 

The violin plot and boxplot of residuals in Figure 7 corroborate Pino's (2014) thesis that, despite 

the primacy of the Normal distribution in several statistical procedures, one cannot assume normality 

as the standard in practice. It is possible to notice outliers (distributions with heavy tails), asymmetry 

(asymmetric distributions), or both (asymmetric distributions with heavy tails); however, the focus of 

this work is on asymmetric normal distributions. 

 

Figure 7. Violin plot together with the Boxplot of the residuals, after adjusting the Logistic, Gompertz and Von 

Bertalanffy models under the Gaussian error (N) to all accessions represented by Figure 1. 

 

The second step consists of plotting the densities of the histograms of each parameter 

(α, β, γ, σ2) of the Logistic, Gompertz and Von Bertallanfy models adjusted to all accessions (see 

Figure 8). The information of the mean and variance measures (hyperparameters) is incorporated into 

the Normal distribution, which will be used as prior for (α, β, γ), and for σ2 the information is 

incorporated into the gamma distribution. 

 



Moura et al. 

 

Braz. J. Biom., v.43, e-43726, 2025. 

14 

 

Figure 8. Histogram densities of the estimates of the parameters (α, β, γ, σ2) of the Logistic, Gompertz and Von 

Bertallanfy models under the Gaussian error (N) via nonlinear mixed models fitted to all accessions represented in 

Figure1. 

 

2.7  Bayesian Framework 
 

Considering Bayes' Theorem in which the joint posterior distribution is proportional to the joint 

distribution of the sample (Likelihood Function) times the joint distribution of the prior distributions 

with their respective hyperparameters. Considering the Logistic, Gompertz and Von Bertallanfy 

model.  

The posterior distribution considering the different errors is given by: (Perez & Rodriguez, 

2018). 

𝑝(𝛼, 𝛽, 𝛾, 𝜎2, 𝜆) ∝ {∏𝑃(𝑌|𝑦 = 0, 𝜆 = 𝐾 − 𝑙𝑖)

𝑛

𝑖=1

} × 𝑁(𝜇
𝛼
, 𝜎𝛼
2) × 𝑁(𝜇

𝛽
, 𝜎𝛽
2) 

× 𝑁(𝜇
𝛾
, 𝜎𝛾
2) × 𝐼𝐺(𝑎𝜎2 , 𝑏𝜎2) × 𝑁(𝜇𝜆, 𝜎𝜆

2) 

 

Where the hyperparameters are obtained by the results represented in Figure 8, and the 𝑙𝑖’𝑠 are 

given by (9), (14) and (19). Except for the SN3 Distribution, which instead of using λ ∼ 𝑁(μ
λ
, σλ
2), a 

Truncated Normal prior λ ∼ 𝑁(μ
λ
, σλ
2)𝑇(0,+∞) is used because of the restrictions of the parameter 

space. 

 

Based on the results represented in Figure 8 and using τ = 1/σ2 we have the empirical priors: 

For the Logistic model:  For the Gompertz model: For the Von Bertalanffy model: 

𝛼~𝑁(49.86,1.76 × 10−3)  𝛼~𝑁(50.43,1.71 × 10−3) 𝛼~𝑁(50.67,1.69 × 10−3)  

𝛽~𝑁(8.63,7.74 × 10−2)  𝛽~𝑁(5.42,0.10)   𝛽~𝑁(3.90,0.11) 

𝛾~𝑁(0.20,259.90)   𝛾~𝑁(0.14,379.78)   𝛾~𝑁(0.12,411.56) 
𝜏~𝐼𝐺(2.54,4.41)   𝜏~𝐼𝐺(3.18,5.75)  𝜏~𝐼𝐺(3.45,8.63)  

𝜆~𝑁(0,10−3)    𝜆~𝑁(0,10−3)    𝜆~𝑁(0,10−3)  
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The Metropolis-Hastings algorithms implemented by the OpenBugs program were used to obtain 

the MCMC chains for each parameter. 

The standardized procedure for implementing all models in the BrgusFit function of the Brugs 

package was the number of iterations (nIter) 2 × 106, the number of burns (nBurnin) 1% of nIter, and 

the number of jumps (nThin) of the order of 100. A pilot analysis was performed beforehand to 

verify the behavior of the results. 

 

3 Results and Discussion 
 

After the procedures adopted in section 2.7, Table 1 shows the results of the a posteriori 

mean of the MCMC chains of the parameters of interest (α, β, γ, σ2, λ) adjusted to Access 7 

(Ikeda bell pepper). 
 

 

 

Table 1. Posterior mean of the parameters (α, β, γ, σ2, λ) of the Logistic, Gompertz and Von Bertallanfy models 

Considering the experimental errors N, SN1, SN2 and SN3, with their respective DIC’s 

 

Modelos Erro α β γ σ2 λ DIC 

Logístico  

Normal 

74,67 9,98 0,18 3,41 0 45,43 

Gompertz 75,68 6,56 0,12 2,32 0 40,26 

Von Bert. 76,19 4,73 0,1 3,41 0 44,59 

Logístico Azzalini's 

Skew-

Normal 

74,77 10,04 0,18 2,52 -2,06 42,16 

Gompertz 75,74 6,71 0,12 1,84 7,99 9,8 

Von Bert. 75,84 4,44 0,11 2,8 -11,94 20,5 

Logístico Sahu’s 

Skew-

Normal 

74,65 9,97 0,18 2,32 -0,01 42,79 

Gompertz 75,62 6,56 0,12 2 -0,06 39,59 

Von Bert. 76,02 4,71 0,11 2,82 -0,34 43,55 

Logístico Fernan

dez & 

Steel 

Skew-

Normal 

74,94 10,13 0,18 1,74 1,18 48,01 

Gompertz 76,13 6,77 0,12 1,21 1,36 35,83 

Von Bert. 75,86 4,63 0,11 1,76 0,96 38,78 
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For the parameter α that represents the asymptotic weight, there is some variation in its 

values, as can be seen graphically in Figure 9, however there is no clear trend if the experimental 

errors of N, SN1, SN2 and SN3 influence the values of α. The same can be seen in the works of 

Mangueira et al. (2016) and Faccin & Rossi (2024). 

When dealing with the β parameter, the Logistic, Gompertz and Von-Bertalanffy models 

have different estimates for the inflection point. The Logistic model estimated that Accession 7 

has its maximum growth speed around 10 days after flowering (9.98, 10.04, 9.97, and 10.03), 

while the Gompertz model estimated between 6 and 7 days (6.56, 6.71, 6.56, and 6.67), and the 

Von Bertalanffy model estimates between 4 and 5 days (4.73, 4.44, 4.71, and 4.63). In this 

parameter, the different experimental errors of N, SN1, SN2 and SN3 were not able to interfere 

in the results, as can be seen graphically in Figure 9. 

When dealing with the γ parameter, the Gompertz, Logistic and Von Bertalanffy models 

also presented clear differences in the growth rate of Accession 7. The Logistic model estimated 

the growth rate at be rorund 0.18, the Gompertz model estimated it around 0.12, and the Von 

Bertalanffy model estimated it around 0.10. In this parameter, the different likelihood functions 

of N, SN1, SN2, and SN3 were also not able to influence its behavior, as can be seen graphically 

with the help of Figure 9. In the work of Mangueira et al. (2016) the different experimental 

errors Normal, Skew-Normal and Skew-t also did not change the values of γ in the frequentist 

estimation of the Logistic model. 

Regarding the parameter σ2 which is the multiplicative inverse of the precision parameter, 

the Logistic, Gompertz and Von Bertalanffy models presented substantial differences. With the 

help of Figure 9 we can see that the Von-Bertalanffy model presented the highest σ2, followed 

by the Logistic model, and with the Gompertz model presenting the lowest values of σ2, or the 

highest precision. It can also be seen that the different likelihood functions of N, SN1, SN2, and 

SN3 were b to change the results of σ2, all the asymmetric versions presented reductions in 

relation to the Normal, and clearly from Figure 9, the experimental error SN3 obtained primacy 

with the lowest values. When analyzing the work of Faccin & Rossi (2024), the Bayesian 

nonlinear regression of the Gompertz model with Skew-Normal and Skew-t errors showed a 

reduction in σ in relation to the Normal and t submodels. 

 

Regarding the DIC values to verify the quality of the adjustment of each combination 

according to Table 1: 

1) There were significant reductions (difference greater than 5) in the DICs of the Gompertz 

(9.8) and Von Bertalanffy (20.5) models with the SN1 error in relation to the N error (40.26 

and 40.29), the difference was not so great for the Logistic model; 

 

2) There were small reductions in the DIC of the Gompertz (42.79), Logistic (39.59), and Von 

Bertalanffy (43.55) models with SN2 error with the N error (45.43, 40.26, and 44.59), 

however nothing greater than 5 as recommended by FIRAT (2017). The asymmetry 

parameter of these models also presented values close to 0 (-0.01, -0.06, and -0.34); 
 

 

3) There were significant reductions in DIC for the Gompertz (35.83) and Von Bertalanffy 

(38.78) models with SN3 error in relation to the N error (40.26 and 44.59); however, for the 

Logistic model, the quality of fit with the N error (45.43) was superior to the SN3 error 

(48.01). When consulting the work of Faccin & Rossi (2024), it was also found that the 

Bayesian fit with Normal and t errors with heteroscedastic errors showed lower DICs than 

with the Skew-Normal and Skew-t errors. 
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When analyzing the issue of the asymmetry parameter λ: 

1) The SN1 error showed evidence of asymmetry in the three growth models, with the Logistic 

(-2.06) and Von-Bertalanffy (-11.94) models showing asymmetry to the left, while the 

Gompertz (7.99) model showed asymmetry to the right. Graphically, Figure 9 shows the 

discrepancy between the asymmetry parameters of SN1, SN2, and SN3; 

 

2) The SN2 error showed evidence of the absence of asymmetry in the Logistic (-0.01), 

Gompertz (-0.06) and Von-Bertalanffy (-0.34) growth models; 

 

 

3) The SN3 error showed evidence of asymmetry to the right (see Figure 9) in all growth 

models. It was then found that the different experimental errors SN1, SN2, and SN3 affect 

the orientation of the asymmetry. While the Logistic model has asymmetry to the left with 

error SN1, the same model has asymmetry to the right with error SN3. 

 
Figure 9. Posterior mean of the parameters (α, β, γ, σ2, λ) of the Logistic, Gompertz and Von Bertallanfy models considering 

the error distributions N, SN1, SN2 and SN3. 

                                                           

The graph in Figure 10 of the densities of the posterior distributions is helpful to provide 

informative priors for future studies and to serve as a reference for other works. In item (d) 

the densities of σ2 that presented less flattened curves are from the SN3 error. In item (e) 

which deals with the densities of λ, it can be seen that the lowest precision occurred in the 

SN2 error with bimodality tendencies; no studies were found that explain this behavior; the 

less flattened curves are due to the SN3 error, and the SN1 errors, despite appearing to have 

a bell tendency around 0, the heavy tails affected the estimate of the mean. 
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Figure 10. Densities of the posterior distributions of the parameters (α, β, γ, σ2, λ) of the Logistic, Gompertz and Von 

Bertallanfy models considering the error distributions N, SN1, SN2 and SN3. 

 

When conducting a pilot analysis to verify the models' behavior, all growth models 

converged when the experimental error N was used, and all passed the Heidelberg-Welch and 

Geweke criteria using the coda (v. 0.19-4.1) package. 

When it comes to the Skew-normal error, the parameters (α, β, γ, σ2) required 100,000 nIter 

(number of iterations) to achieve convergence of the MCMC chains, values close to those also 

used by Guedes et al. (2014). λ is the only parameter that proved to be problematic, requiring 

millions of nIter – values also obtained by Rossi & Santos (2014) – to pass the half-width test 

that makes up the Heidelberg-Welch test. Pereira et al. (2020) explain that the author uses the 

Modified weighted importance resampling methodology as an alternative to Metropolis-

Hastings MCMC to overcome the problem of high nIter. The strategy adopted in this work to 

reduce nIter consists of using estimates close to frequentists, a strategy also used by Rossi & 

Santos (2014). Figure 11 shows the reduction in nThin values when using or not using estimates 

from nonlinear Mixed Models as initial values. 
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Figure 11. Autocorrelation of the MCMC chains of the parameters θ = (α, β, γ, σ2, λ) of the Logistic model with SN1 

error when considering the initial values θ𝑜 = (1,1,1,1,1) in comparison when considering the estimates obtained from 

Access 7 through the adjustment of nonlinear Mixed Models for θ𝑜. 

 

The negative points to be highlighted in these implementations are due to the complexity of 

writing these distributions in the Bugs language, which is quite limited. This requires 

subterfuges such as the use of hierarchical models (Fassin & Rossi, 2024) or approximations of 

arbitrary likelihood functions. Another observation is the high computational cost for SN1, SN2, 

and SN3 in the range of millions of MCMC iterations, something that did not occur in the N 

submodel. 

In general, the implementation of the Skew-Normal distributions of Azzalini (1985) and 

Skew-Normal of Fernandez & Steel (1998) in the experimental error of the Gompertz and Von 

Bertalanffy growth models proved relevant. They presented a significant gain in the adjustment 

quality and precision of the models with the Normal submodel. In all scenarios, the Gompertz 

model proved to be more suitable. 

 

4 Conclusion 
 

Among the distributions implemented, the best-fit quality comes from the Skew-Normal error 

of Fernandez & Steel and Azzalini with the Gompertz and Von Bertalanffy models. 
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