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Abstract

The COVID-19 pandemic was marked by great fear, as it was a new disease of which we had no knowl-
edge regarding its effects and prevention methods. However, during this period, we also made significant
advances in research across various fields, from studying the causes and effects of the disease to the de-
velopment of vaccines. In this study, we focus on assessing the evolution (recovery/death) of COVID-19
inpatients, who were hospitalized in the state of Parand, Brazil in the year of 2022. To achieve this,
we analyzed data from the System of Epidemiological Surveillance of Influenza (SIVEP) which provides
information about Brazilian patients hospitalized with severe acute respiratory syndrome, using several
machine learning techniques that allowed us to relate the patient evolution to possible associated factors.
Results showed that age, gender, education, and neurological disorder, among other factors, have sig-
nificant impacts in the evolution of inpatients. When predicting the patient outcome, we obtained an
accuracy over 75%, which shows the efficiency of the models.

Keywords: COVID-19; prediction models; risk factors; SIVEP; supervised learning.

1. Introduction

According to the World Health Organization (WHO, [2023), as of October 9, 2023, there
were 771,151,224 confirmed cases of COVID-19 worldwide, since the onset of the pandemic, with
37,827,912 cases occurring in Brazil. Due to the rapid growth of COVID-19 cases, many re-
searchers have used machine learning techniques to assist in diagnosing patients (Alyasseri et al,
. Jung et al, @ applied machine learning techniques to data from a Paris hospital in order
to assess severity considering the first three waves of the disease.

In Brazil, several studies were carried out to understand the regional effects of the pandemic.
Oliveira et al,, evaluated the survival times of Brazilian inpatients and showed that the risk of
death varies significantly depending on the region of these patients. Barreto et al.,used machine
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and deep learning techniques to predict the evolution of inpatients from the state of Rio Grande do
Norte and Oliveira & Nobre, [2023|used machine leaning to predict hospitalization in Minas Gerais.

According to the Parand Health Department, on March 12, 2020, the first six cases of Covid-
19 were confirmed in the state. Since then, 2,946,293 cases have been confirmed until October 9,
2023. In this study, we consider the period from January 1, 2022, to September 12, 2022 and use
data provided by the System of Epidemiological Surveillance of Influenza (SIVEP), which provides
information about all Brazilian patients hospitalized with severe acute respiratory syndrome. This
database shows that, in the time period considered in this study, the number of hospitalizations in
the state of Parand was 12,030 with 9,139 of them in of them being admitted to Intensive Care
Units (ICUs) and with patients aged between 18 and 101 years. The SIVEP database also shows
information about comorbidities, personal patient data, among other relevant information and the
outcome is the patient evolution, which is a categorical variable with two levels: recovery and death
(DATASUS, 2022).

Considering the rich information in the SIVEP database, our goal in this study is to assess and
predict the evolution of patients, hospitalized in the state of Parand, Brazil, based on the many
variables available, such as gender, race, education, age, comorbidities, vaccine status, etc, while also
evaluating the impact that these variables have on the outcome, using supervised machine learning
techniques. (Hastie ef al, 2009; Monard & Baranauskas, 2003).

The research was previously exempt from approval by the Research Ethics Committee, as the
database is public. In accordance with Resolution 466/12 of the Brazilian Research Council, the
researchers reported a total ethical commitment in the handling, analysis and publication of data so
that the research does not require approval.

2. Materials and Methods

2.1 Data

The data used in this study pertain to adult (age 18 to 59) and elderly (60 years or more) patients
diagnosed with COVID-19 and hospitalized in the state of Parana, Brazil, in the year 2022. These
data were obtained from the "Severe Acute Respiratory Syndrome Database" constructed by the
SIVEP-Gripe and are available at DATASUS (2022). The database comprises 12,030 observations,
which are cases reported between January 1, 2022, and September 12, 2022. We only consider data
from 2022, as 1 year of vaccination has been completed and we focus on the state of Parana due to
regional differences in health quality levels in Brazil (Janior ef al,2019; Oliveira et al., 2024).

For the study, the inclusion criteria selected were the nationality of the patient, who had to be
Brazilian residents in the state of Parand and confirmed to have a COVID-19 infection. As predictor
variables, we considered gender, race, education, nosocomial, puerperal, heart disease, hematology,
Down syndrome, liver diseases, asthma, diabetes, chronic neurological disease, pulmonary disease,
immunodeficiency, renal disease, obesity, COVID-19 vaccination, ICU admission, use of ventila-
tory support, and age group as shown in Table |1} Other possible predictors, such as the symptoms
and type of vaccine were not included due to poor quality data.

2.2 Machine learning methods

In this section we briefly describe several machine learning techniques that will be used to predict
the patient evolution using the described predictors.

2.2.1 Logistic regression

The first technique considered is the logistic regression (LR), which is a regression model that
belongs to the Generalized Linear Models family (McCullagh & Nelder, 11989). The LR allows us
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to estimate the probability (p) of an outcome as a function of several predictors xjy j=1,, k, as
shown in equation (1).

1og(1’_’p>=fso+f51x1+...+(5kxk (1)

In this model, the ; are the regression coefhicients which can be estimated via Maximum Like-
lihood. Once these coeflicients are estimated it is straightforward to compute the estimated prob-
abilities and, choosing a cutoff point, we are able to classify the observations. In this paper, we
consider the best cutoff point as the one that maximizes the Youden’s index (Martinez-Camblor &
Pardo-Fernandez, [2019; Youden, |1950).

2.2.2 Classification trees

Classification trees (CT), a non-parametric methodology used for decision-making, are well-
known for their interpretability as they allow the visualization of decision logic in the form of a
tree. The construction involves recursive partitioning of the predictor variables’ space into nodes
and leaves (Izbicki & dos Santos, [2020). The best partition is determined by minimizing the Gini
index, given by equation ,

Z ZﬁR,c(l _i’R,c)’ (2)

R ccC

where pg . is the proportion of observations classified as category ¢ in region R. This index is
minimized when the leaves contain observations of a single class. (Breiman e al, 2017).

The construction of the tree occurs in two stages: creating the complete tree and pruning to
avoid overfitting. The prediction for the i-th observation in the k-th region is given by the mode
of the responses observed in that region as shown in equation (3).

¢(x) = mode{y: x € R} 3)

Classification trees are used in various applications, such as email spam classification (Sharma &
Sahni, 2011), public health (Lemon et al,2003), demand forecasting (Bala, 2010), and fraud detection
(Chiu er al,[2011), due to their ability to handle both categorical and numerical data while providing
interpretable predictions.

2.2.3 Random forests

Next, we consider the Random Forests (RF) methodology, which builds a classifier combining
multiple trees of different sizes and and built with a random subset of predictor variables, reducing
overfitting (Izbicki & dos Santos, 2020). In this way, RF perform a random selection of predictor
variables at each node of the trees, thus reducing the correlation between the trees and increasing
the model’s diversity.

The choice of the number of trees (B) and the variables to be selected randomly is related to
the model’s effectiveness and can be determined through cross-validation to balance the model’s
complexity and efficiency. To classify an observation with a random forest, predictions from all the
trees are combined using the mode shown in equation ,
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¢(x) = mode {gb(x), b= 1,...,B}, (4)
where gb(x) is the prediction from the b-th tree.

2.2.4 Support vector machine

The Support Vector Machine (SVM) technique (Cortes & Vapnik, [1995) is a powerful machine
learning tool used for classification and regression, especially in high-dimensional cases. Unlike
other methods, SVM does not estimate probabilities P(Y = clx) but provides estimated classes for
new observations.

SVM uses a linear function f(x) to construct a classifier ¢(x) and when the observations are
linearly separable, SVM builds a hyperplane that perfectly separates the observations according to
their classes. The margin between the hyperplane and the closest points is maximized and the points
used to define the margins are called support vectors.

When the data is not linearly separable, SVM allows some points to be on the "wrong" side of
the margins. This is controlled by a hyperparameter C, which determines the trade-off between
fitting the training data correctly and seeking a larger margin. In more complicated scenarios, the
Kernel Trick can be used to map the original space to a higher-dimensional space, improving the
classification. Different types of kernels, such as polynomial, radial, and sigmoid kernels can be
applied to perform this mapping. For more details, see Hastie ef al, 2009 and Izbicki & dos Santos,
2020L

2.2.5 Naive Bayes

The last methodology considered in this paper is the Naive Bayes (NB) which estimates the
conditional probability of an event occurring given a set of predictors (P(Y = c|x)) using the Bayes
Theorem.

flxlY=0P(Y=0¢
Y flxlY=5)P(Y =)

To obtain the conditional probability shown in equation , we must estimate the marginal
probabilities P(Y = s) and the conditional densities f (x| Y = s), for all classes s. The marginal proba-
bilities can be estimated as the sample proportions of each class, however, to estimate the conditional
densities, we need to assume that the predictors are conditionally independent, given the class Y = .
With this assumption, the conditional density can be rewritten as:

P(Y =clx) =

(5)

k
f(x|Y=s)=f((x1,-- |Y—s =Hf 1Y =5) (6)
=1

The assumption represented by equation @ makes the algorithm computationally efficient and
easy to implement and, even with these assumption, the NB classifier tends to be robust and works
well in many scenarios. This makes the algorithm computationally efficient and easy to implement.
For more details, see Morettin & Singer, 2022 and Sohil er al., 2022,
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3. Results and Discussion

Initially, a descriptive analysis was conducted and its results are summarized in Table 1, which
presents all the predictors, the frequencies for each predictor, in general and according to the patient
evolution, and the p-value of the Person chi-square test.

We note that the patients are, mostly, elderly (68.97%), white (81.11%), and have low levels of
education. Nearly 29% of patients needed intensive care treatment (ICU) while 13% used invasive
ventilatory support and 68.29% recovered. The most common comorbidity among the hospitalized
patients is Cardiopathy (35,74%) followed by Diabetes (23.13%). At a 5% significance level, the
predictors that were not associated with the patient evolution are Hematology, Down Syndrome,

Asthma, and Obesity.

For the following analysis we randomly split the data in two: the fraining and test datasets, con-
taining 70% and 30% of the data, respectively. The first one was used to train the algorithms and
the second to evaluate the prediction quality from the trained algorithms. All data analysis was
performed using the R software (R Core Team, 2021) and we used the pROC (Robin et al, [2011)
package to find the best cutoff points and compute the predictive measures show in in Table
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Table 1. Descriptive statistics of the associated factors.

Predictor Levels Recovery (%) Death(%) Total p-value

Sex M 3918 (47.69%) 2086 (54.68%)  6004(49.90%) <0.001
F 4297 (52.31%) 1729 (45.32%)  6026(50.10%)

Age Adult 2966 (36.1%)  767(20.1%)  3733(31.03%)  <0.001
Elderly 5249 (63.9%) 3048 (79.9%)  8297(68.97%)

Race White 5964 (83.69%) 2667 (82.95%) 8631(81.11%)  0.142
Yellow 63 (0.88%) 38 (1.18%) 101(0.95%)
Brown 913 (12.81%) 413 (12.85%)  1626(15.28%)
Black 176 (2.47%) 96 (2.99%) 272(2.56%)
Indian 10 (0.14%) 1 (0.03%) 11(10.35%)

Education No 194 (7.95%) 139 (12.07%) 333(9.27%) <0.001
Elementaryl 743 (30.45%) 422 (36.63%)  1165(32.43%)
Elementary2  525(21.52%) 277 (24.05%)  802(22.33%)
Highschool 684 (28.03%) 236 (20.49%)  920(25.61%)
College 294 (12.05%) 78 (6.77%) 372(10.35%)

Nosocomial Yes 187 (2.28%) 109 (2.86%) 293(2.44%) 0.064
No 8028 (97.72%) 3706 (97.14%) 11734(97.56%)

Postpartum Yes 90 (1.1%) 1 (0.03%) 91(0.76%) <0.001
No 8125(98.9%) 3814 (99.97%) 11939(99.24%)

Cardiopathy Yes 2696 (32.82%) 1571 (41.18%) 4267(35.47%)  <0.001
No 5519 (67.18%) 2244 (58.82%)  7763(64.53%)

Hematology Yes 76 (0.93%) 49 (1.28%) 125(1.04%) 0.087
No 8139 (99.07%) 3766 (98.72%) 11905(98.96%)

Down Syndrome Yes 29 (0.35%) 19 (0.5%) 38(0.32%) 0.308
No 8186 (99.65%) 3796 (99.5%)  11992(99.68%)

Liver Disease Yes 68 (0.83%) 87 (2.28%) 155(1.29%) <0.001
No 8147 (99.17%) 3728 (97.72%) 11875(98.71%)

Asthma Yes 255 (3.1%) 114 (2.99%) 369(3.07%) 0.775
No 7960 (96.9%) 3701 (97.01%) 11661(96.93%)

Diabetes Yes 1779 (21.66%) 1004 (26.32%)  2783(23.13%)  <0.001
No 6436 (78.34%) 2811 (73.68%)  9247(76.87%)

Neurological Disease  Yes 647 (7.88%) 495 (12.98%) 1142(9.49%) <0.001
No 7568 (92.12%) 3320 (87.02%) 10888(90.51%)

Pneumopathy Yes 535 (6.51%) 360 (9.44%) 895(7.44%) <0.001
No 7680 (93.49%) 3455 (90.56%) 11135(92.56%)

Immunodeficiency Yes 283 (3.44%) 234 (6.13%) 517(4.3%) <0.001
No 7932 (96.56%) 3581 (93.87%)  11513(95.7%)

Kidney disease Yes 391 (4.76%) 294 (7.71%) 685(5.69%) <0.001
No 7824 (95.24%)  3521(92.29%) 11345(94.31%)

Obesity Yes 488 (5.94%) 250 (6.55%) 738(6.13%) 0.206
No 7727 (94.06%) 3565 (93.45%) 11292(93.87%)

Covid vaccine Yes 6696 (83.52%) 3018 (81.04%) 9714(80.75%)  0.001
No 1321 (16.48%) 706 (18.96%)  2316(19.25%)

ICU Yes 1525 (18.56%) 1954 (51.22%) 3479(28.92%) <0.001
No 6690 (81.44%) 1861 (48.78%)  8551(71.08%)

Ventilatory support Invasive 309 (3.76%) 1305 (34.21%)  1611(13.39%) <0.001
Non-invasive 3889 (47.34%) 1707 (44.74%)  5596(46.53%)

(

No

4017 (48.9%)

803 (21.05%)

4820(40.08%)
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3.1 Logistic Regression

Initially, we modeled the probability of a patient death via LR. Due to the large number of
predictors, we applied the stepwise method for variable selection, using the Akaike Information
Criteria (AIC) value to select the most important predictors. We used the hnp and pROC packages
to evaluate the residuals and find the best cutoff point for the estimated Table 2| shows the results
from the fitted LR model including estimated regression coefhicients (), its standard error (SE), the
p-value, the Odds Ratio (OR) and a 95% confidence interval for the OR.

Table 2. Estimates of the logistic regression final model.

Predictor Level B SE p-value OR 95% ClI
Intercept = 0.866 0.263 0.001 2.37 1.42-3.98
Sex Male 0.385 0.107 <0.001 1469 1.19-1.81
Elementary 1 -0.401 0.174 0.021 0.669 0.48-0.94
Education Elementary 2 -0.592 0.191 0.002 0.553 0.38-0.80
High School -0.620 0.196 0.001 0.538 0.37-0.79
College -0.909 0.244 <0.001 0.403 0.25-0.65
Postpartum Yes -12.895  249.248 0.959 <0.001 0.00-0.00
Neurological Disorder  Yes 0.621 0.171 <0.001 1.862  1.33-2.60
Immunodeficiency Yes 0.750 0.280 0.007 2.116  1.22-3.66
Obesity Yes 0.327 0.205 0.110 1.387 0.92-2.07
ICU Yes 0.491 0.134 <0.001 1.633 1.25-2.12
Ventilatory Support No -3.029 0.213 <0.001 0.048 0.03-0.07
Yes, non-invasive -1.990 0.187 <0.001 0.136 0.09-0.19
Age Elderly 0.641 0.138 <0.001 1.898 1.45-2.49

Observing the OR values obtained for statistically significant variables, we find that male patients
have a 47% higher chance of death compared to female patients. Evaluating the Education predictor,
we note that, as the patient education level increases, the probability of death decreases, so that
patients with a elementary 1 level of education have a 33% lower chance of death than patients with
no education. In the outermost case, the chance of death in patients with college education are 60%
lower when compared to patients with no education.

For patients diagnosed with neurological diseases the chance of death is 86% higher while in
patients with immunodeficiency this value is 111%. We also note that patients who were admitted
to the ICU or had invasive ventilatory support have much higher chances of death. Finally, elderly
patients have a 90% higher chance of death than adult patients. This significant increase in the oc-
currence of death is justified because some variables address risk factors presented in various articles,
for example, Duprat & Melo, [2020 and Galvio & Roncalli, 2021,

Applying this model to the test dataset, we estimate the probability of death for each patient and,
using this probabilities, we can predict the patient evolution. The best cutoff point for classification
was found to be 0.399, that is, patients who have an estimated probability of death lower than
0.399 are predicted to recover. The predictive capacity measures obtained through this process are
organized in Table [5| where we can see that 78% of the patients in the test dataset were classified
correctly. Among the patients that recovered the proportion of correctly classified observation is
88% and among the deaths this number is 55%.

3.2 Classification Tree
The classification tree was built using all the variables in the dataset and was subsequently pruned
to obtain a more effective and less complex model. Initially, the complexity parameter for tree
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construction was set to 0.001. For pruning, we evaluated the cross-validation error and its minimum
value was 0.737 corresponding to a total of 10 splits. This analysis was conducted using the rpart
(Therneau & Atkinson, 2019) and rpart.plor (Milborrow, 2022) packages.

No, non-invasive Recovery Invasive
2
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L | ! ) ) I ! s ! | |
Recovery Recovery Death Recovery Death Recovery Death Death Death Death Death
80.20 74 26 25.75 60.40 14 86 57 43 22.78 1189 43 57 35 65 19 81
69% 5% % 6% 0% 4% 0% 0% 2% 1% 13%

Figure 1. Classification tree pruned tree with 10 splits.

Figure shows the pruned tree with 10 splits. In this tree, the selected variables were ventilatory
support, ICU admission, the patient’s age group, asthma, education, neurological diseases, liver dis-
eases, nosocomial, and race. The ventilatory support variable appeared twice in the model because
it has three categories. Among patients requiring invasive ventilatory support, the proportion of
deaths was 81%. For patients where treatment was done non-invasively or there was no support,
the proportion of recovery was 76%.

The second split was generated by the ICU admission variable. Patients who were not admitted
to the ICU had a recovery proportion of 80% while those who were admitted had a recovery pro-
portion of 59%. The third split was given by the age group, with a 73% recovery proportion for
adult patients. These patients were directed to a fourth split defined by the asthma variable, where
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asthmatic patients had a death proportion of 75%, while non-asthmatic patients had a recovery pro-
portion of 74%.

Elderly patients were directed to the fifth split given by the education variable. Patients with
a high school level of education, or higher, had a recovery proportion of 59% and were directed
to a sixth node given by the liver disease variable. Patients with liver diseases had an 86% death
proportion; otherwise, they had a 60% recovery proportion. Patients with a grade school level 1 or
no education had a 51% death proportion and were directed to a seventh split given by the neuro-
logical disease variable. The death proportion for patients with this condition was 65%; otherwise,
an eighth split was made.

In the eighth split, the use of non-invasive ventilatory support showed a 57% death proportion;
otherwise, the recovery proportion was 55%. The ninth split, given by the nosocomial variable,
showed a death proportion of 89%; otherwise, the recovery proportion was 56%. The last split was
generated by the race variable. Whites or people of mixed race had a recovery proportion of 57%,
while other cases had a death proportion of 78%.

To assess the predictive power of the model, we applied it to the test sample and computed
the predictive metrics in the Table 5} We note that the CT classifier obtained an accuracy value
of 77%. Despite the model having a low sensitivity value, we had a high specificity, indicating
a good proportion of correct negative classifications. The Negative Predictive Value (NPV) and
Positive Predictive Value (PPV) metrics were balanced, 76% and 77%, respectively, showing that
this classifier does not favor the cure or death of patients.

3.3 Random Forests

To implement the RF model, we considered the randomForest package (Liaw & Wiener, 2002)
and explored several configurations to maximize it’s predictive power. Specifically, we varied the
number of variables from 1 to 20 and the number of trees among 500, 1000, and 1500, selecting
the combination that achieved the highest accuracy. The results, presented in Table B{show that the
highest accuracy was obtained with forests containing either 500 or 1000 trees and using 5 variables.
Since both configurations yielded the same accuracy, we selected the model with 500 trees for its
computational efficiency.

Braz. |. Biom., v.43, e-43713, 2025. 9
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Table 3. Number of variables, trees and resulted accuracy of the generated Random Forests.

Variables  Trees Accuracy | Variables Trees Accuracy | Variables Trees Accuracy
1 500 0.686 8 500 0.759 15 500 0.743
1 1000 0.686 8 1000 0.756 15 1000 0.742
1 1500 0.686 8 1500 0.757 15 1500 0.742
2 500 0.759 9 500 0.752 16 500 0.741
2 1000 0.759 9 1000 0.750 16 1000 0.741
2 1500 0.760 9 1500 0.754 16 1500 0.744
3 500 0.758 10 500 0.752 17 500 0.741
3 1000 0.759 10 1000 0.751 17 1000 0.741
3 1500 0.757 10 1500 0.749 17 1500 0.741
4 500 0.763 11 500 0.749 18 500 0.742
4 1000 0.762 11 1000 0.749 18 1000 0.742
4 1500 0.762 11 1500 0.749 18 1500 0.740
5 500 0.765 12 500 0.745 19 500 0.739
5 1000 0.765 12 1000 0.747 19 1000 0.739
5 1500 0.762 12 1500 0.749 19 1500 0.741
6 500 0.764 13 500 0.745 20 500 0.741
6 1000 0.764 13 1000 0.746 20 1000 0.741
6 1500 0.764 13 1500 0.742 20 1500 0.741
7 500 0.759 14 500 0.745
7 1000 0.761 14 1000 0.743
7 1500 0.758 14 1500 0.744

Applying the chosen forest to the test dataset, the probability of death was estimated for each
observation. The cutoff point was chosen in the same way as in the LR and its value is 0.295. Table
5 presents the predictive metrics of the forest using this cutoff point.

The RF classifier showed a satisfactory accuracy value, when compared to the previous two
classifiers. The values of specificity and VPN were also high, demonstrating that the model had a
good correct classification proportion for negatives, i.e., patients classified as recovery.

3.4 SupportVector Machines - SVM

To build the best the SVM classifier we considered different values for the hyperparameters that
control the number of observations that can be on the "wrong" side of the margins, and several
options for the kernel, including radial, linear, sigmoid, and polynomial. The cost parameter varied
among the values 0.001, 0.01, 0.1, 1, 10, 100, 1000, and gamma between 0.5, 1, and 2. For each
combination of these parameters, we evaluated the errors and the results are shown in Table|4] This
analysis was conducted using the 1071 (Meyer et al,2021).
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Table 4. Error of the SVM classifier for each combination of parameters values and kernels.

Radial Linear Sigmoid Polynomial
Cost Gamma  Error | Cost Error | Cost Gamma  Error Cost Gamma  Error
0.001 0.5 0.326 | 0.001 0.319 | 0.001 0.5 0.326 | 0.001 0.5 0.251
0.01 0.5 0.326 | 0.01 0.259 | 0.01 0.5 0.253 | 0.01 0.5 0.262
0.1 0.5 0.326 | 0.1 0.258 | 0.1 0.5 0.325 | 0.1 0.5 0.280
1 0.5 0294 | 1 0.257 | 1 0.5 0333 | 1 0.5 0.285
10 0.5 0.303 | 10 0.252 | 10 0.5 0.353 | 10 0.5 0.284
100 0.5 0.305 | 100 0.253 | 100 0.5 0.351 | 100 0.5 0.306
1000 0.5 0.308 | 1000 0.263 | 1000 0.5 0.353 | 1000 0.5 0.299
0.001 1 0.326 0.001 1 0.326 | 0.001 1 0.262
0.01 1 0.326 0.01 1 0.251 | 0.01 1 0.278
0.1 1 0.326 0.1 1 0.331 | 0.1 1 0.287
1 1 0.311 1 1 0351 | 1 1 0.287
10 1 0.313 10 1 0.337 | 10 1 0.309
100 1 0.319 100 1 0.335 | 100 1 0.298
1000 1 0.316 1000 1 0.327 | 1000 1 0.405
0.001 2 0.326 0.001 2 0.326 | 0.001 2 0.277
0.01 2 0.326 0.01 2 0.252 | 0.01 2 0.285
0.1 2 0.326 0.1 2 0.341 | 0.1 2 0.287
1 2 0.310 1 2 0352 | 1 2 0.287
10 2 0.314 10 2 0.355 | 10 2 0.300
100 2 0.316 100 2 0.352 | 100 2 0.413
1000 2 0.316 1000 2 0.343 | 1000 2 0.508

Based on the results in Table [4] we selected the sigmoid kernel with a cost value of 0.01 and
gamma of 1, as it yielded the lowest error among all tested configurations. We applied this classifier
to the test data and computed the predictive metrics presented in Table The results indicate that the
SVM classifier achieved good accuracy, with high sensitivity and positive predictive value (PPV),
suggesting effective classification of positive cases.

3.5 Naive Bayes

In the naive Bayes prediction model, the parameter selection was done through ten-fold repeated
cross-validation, varying the Laplace smoothing and bandwidth of the model. The metric for model
selection was accuracy. Unlike the models presented earlier, we did not choose the variables to be
used in the model, thus utilizing all variables in the dataset. The best results were obtained with
a bandwidth value of 3 for the model as it provided the highest accuracy, up to the fifth decimal
place and the application or absence of Laplace smoothing did not influence the model fit. Thus, we
assumed the model without Laplace smoothing.

The NB outputs are the probabilities of death and a cutoff point was computed to make the
classification as in the LR and RF scenarios. Applying it to the test data, we obtain the results in Table
[5| where we note that the naive Bayes technique showed the lowest accuracy among all techniques,(
72%), but high specificity and NPV values suggesting effective classification of negative cases.

3.6 Discussion
In Tablewe observe that the highest accuracy values were obtained in the LR and CT methods.
Additionally, both methods facilitate the identification of predictors that are significantly associated
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Table 5. Metrics of predictive quality for the fitted techniques.

Fit Sen Esp PPV NPV Acc
LR 55 88 69 81 78
CT 40 94 76 7 7
RF 60 83 63 82 76
SVM 77 67 90 43 75
NB 59 79 57 80 72

with the outcome. Comparing the results from these techniques, we note several similarities: both
identified the Ventilatory support as the main predictor while also recognizing Education, Age and
ICU as associated factors. However, we see a certain advantage in the CT as it can combine the
predictors levels to produce a better model. For example, for the Ventilatory support, the CT only
considers the split in No and Yes, no invasive after the data was split by Age, Education and Neurological
diseases. The CT also identifies predictors that did not show up in the LR, such as Asthma, Liver
diseases, Neurological diseases, Nosocomial diseases and Race. This structure resulted in a more balanced
prediction, with a PPV and NPV of 76% and 77%, indicating that it can be used to predict deaths and
recoveries while maintaining a high correct classification while the LR is not so good in predicting
deaths. This shows us that the associated factors identified by only the CT are also important and
should be considered in future studies.

The predictions in the other three classifiers are very unbalanced, that is, the RF and NB perform
well in identifying negatives, but show much lower PPV values while the SVM has the opposite
behavior. However, it can be argued that, in this situation, a good prediction of positives (deaths) is
more important, as it would identify patients at higher risk, allowing them to be treated differently,
reducing the total number of deaths. Following this idea, SVM appears to be the best technique that
could be applied to patient data upon admission.

Regarding the risk factors, similar results were found in Oliveira e al, 2024 where higher ed-
ucation levels were associated with a lower risk of death. Other factors, such as sex, age, and ICU
admission, were also identified in both studies, but the Asthma predictor was only identified in the
CT. Oliveira & Nobre, [2023| identified in their study Age and Race as associated factors for hospi-
talization with Comorbidity being the most important predictor.

Due to the large number of COVID-19 cases and different levels of worsening of the disease, the
research was limited by the cases included in the database, where only hospitalized patients were
included. We are also limited by the lack of data for other important variables in this predictive
process, such as the patient’s clinical condition.

4, Conclusions

In this study, we applied various classification methods to predict the outcomes of COVID-19
inpatients in Parand. The models used include Logistic Regression, Decision Trees, Random Forests,
Support Vector Machines and Naive Bayes.

When comparing the applied techniques using prediction metrics, we observed that the LR
achieved the highest accuracy, demonstrating its usefulness in understanding how the the associated
factors impact the outcome and as a classifier. However, its PPV and NPV values were unbalanced,
indicating that the LR performs well in classifying recoveries cases but is less effective in predicting
the deaths. The NB and RF results showed a similar behavior to the LR, in the sense that they
performed better when classifying negatives than positives, but with a smaller overall accuracy.

Opposite to that, the SVM showed the best results when classifying the positives, with a PPV
of 90% indicating that it can be used to evaluate whether a patient has a high risk of death. But, it
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has a poor performance when classifying the recoveries, with a NPV of only 43%. Finally, the CT
provided the most balanced prediction results, with a PPV and NPV of 76% and 77%, indicating
that it can be used to predict deaths and recoveries while maintaining a high correct classification
overall. The CT also gives an understanding of the relationships between the outcome and the
predictors and among the predictors themselves.

Regarding the impact of the predictors on patient outcomes the LR and CT showed some similar
results, identifying the use of ventilatory support, education, age, ICU, and neurological diseases as
risk factors for COVID-19 inpatients.
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