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Abstract
We consider discrete mortality data for groups of individuals observed over time. The fitting of cumula-
tive mortality curves as a function of time involves the longitudinal modelling of the multinomial response.
Typically such data exhibit overdispersion, that is greater variation than predicted by the multinomial dis-
tribution. To model the extra-multinomial variation (overdispersion) we consider a Dirichlet-multinomial
model, a random intercept model and a random intercept and slope model. We construct asymptotic and
robust covariance matrix estimators for the regression parameter standard errors. Applying this model to
a specific insect bioassay of the fungus Beauveria bassiana, we note some simple relationships in the results
and explore why these are simply a consequence of the data structure. Fitted models are used to make
inferences on the effectiveness and consistency of different isolates of the fungus to provide recommen-
dations for its use as a biological control in the field.

Keywords: Grouped data; Dirichlet-multinomial; Extra-multinomial variation; Generalized estimating
equations; Generalized linear models; Random effects models.

1. Introduction

Biological pest control uses entomopathogenic agents or pathogens (viruses, fungi, bacteria,
parasites and nematodes) to control or eliminate a pest population. These biological control methods
are an alternative to traditional methods and are becoming of increased interest because they provide
ecologically and economically attractive replacements for chemical pesticides.
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In toxicology experiments for these agents, it is common to use a response such as the cumulative
mortality in a group (in a sampling context this is often referred to as a cluster) of insects measured
at various time points (days) during the course of the experiment. Hence, the data is partly longitu-
dinal since the cumulative mortality (for the individual groups) is modeled as a function of time and
group level covariates. Petkau & Sitter (1989) drew attention to the problem of fitting cumulative
mortality as a function of time to grouped data which involves modeling the multinomial response
over time. They also emphasised an additional aspect, the possibility of extra-multinomial variation
(overdispersion) arising from the use of groups of insects as the experimental units. A consequence
of failing to take overdispersion into account is the underestimation of the standard errors of esti-
mated regression coefficients giving incorrect significance of treatment effects (Hinde & Demétrio,
1998) and confidence intervals that are too narrow. In assessing the effectiveness of the different
isolates of the pathogen we can consider the lethal time, LTP, until a certain percentage P of the
insects have died; typically the LT50 (the median lethal dose) may be used as a simple summary of
potency. Model-based estimates of these lethal times are easily obtained from the fitted regression
coefficients and again, to obtain reliable estimates of the associated standard errors, we again need
to take overdispersion into account. In selecting good isolates for consideration in field applica-
tion we obviously require those with short lethal times, but the standard errors are also informative
about the reliability of particular strains; as we will see some isolates exhibit much greater variability
than others. In related studies with varying dose levels similar models can also help to determine
application levels for use in the field.

Standard approaches for the analysis of this form of time course data include survival analysis
(Petkau & Sitter, 1989) and ordinal generalized linear models (McCullagh, 1980; Glonek & Mc-
Cullagh, 1995). However, these approaches are questionable when there is extra-multinomial vari-
ability in the data. The use of Liang & Zeger (1986) generalized estimating equations (GEE) as a
multivariate version of quasi-likelihood (QL) (McCullagh & Nelder, 1989) has been considered as
an approach to the problem of fitting a generalized linear model (GLM) to grouped/clustered data.
The GEE approach addresses the problem of correlated or overdispersed data by using an adjusted
score equation for the parameter estimates. We have to specify only the first two moments of the
response vector for each group/cluster, assuming some form for the functional relationship between
the mean and the variance. In GEE there is no need to specify the full likelihood, which is often in-
tractable for non-Gaussian models even if additional assumptions are made. For Gaussian models the
first and second moments fully identify the likelihood and so GEE is equivalent to maximum likeli-
hood, but with non-Gaussian data the use of GEE provides estimating equations that are generally
only optimal under specific assumptions about higher-order moments.

In this paper, we present four models suitable for grouped multinomial data, three of which are
directed towards handling overdispersion. We use the GLM framework for multinomial data to
model overdispersion in clustered data extending the approach given in O’Hara Hines & Lawless
(1993), using a logit link function to relate the cumulative proportion to a specific linear predictor.
The first model is the standard cumulative multinomial model. The second model is an extension to
multinomial data of the beta-binomial model, which is often used for overdispersed binomial data.
This model compounds the multinomial distribution for the observed counts with a Dirichlet dis-
tribution for the vector of underlying probabilities, leading to a Dirichlet-multinomial distribution,
which has a different form for the variance function generalizing that for the standard multinomial
distribution. Note that the Dirichlet-multinomial generalization has been applied in many differ-
ent settings, including to nominal polytomous data (Salvador et al., 2022), as an extension to deep
learning for RNA sequencing data (Corsini & Viroli, 2022). The third model is a random intercept
model, where we incorporate an additive random effect in the linear predictor to give a random
location shift for each distinct multinomial sample. The final model is an extension of third model
and includes both random intercepts and random slopes (Freitas, 2001).
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The rest of the paper is organised as follows. In Section 2 we describe a data set from a biological
control assay that we use to illustrate the proposed models. Details of the parameterizations and the
variance-covariance structures of the models are discussed in Section 3. The procedures used to
estimate the parameters are given in Section 4 and in Section 5 we analyse the data set and present
the results. Section 6 discusses some particular aspects of the results that arise in applying the models
to this specific regularly structured dataset. A theoretical derivation is provided to reinforce the
validity of empirical results. The paper concludes with some additional comments and conclusions.

2. The biological dataset

The termite Heterotermes tenuis is an important pest of sugarcane in Brazil, causing damage
of up to 10 metric tones/ha/year (Almeida et al., 1997; Tamai, 1997 ), either during the planting
season or the maturation phase. The fungus Beauveria bassiana is a possible microbial control for
H. tenuis with the desirable characteristic of living inside the nests of the pest, which facilitates the
dissemination of the pathogen. The data considered here are from a study conducted at the Insect
Pathology Laboratory of ESALQ-USP, Piracicaba, São Paulo, Brazil. The aim was to determine
the pathogenicity and virulence of 142 different isolates of Beauveria bassiana.

The data set discussed in this paper is from a completely randomized experiment, with five
replicates of each of the 142 isolates. Solutions of the isolates (5 × 108 particles/ml) were applied to
groups (clusters) of n = 30 termites kept in plastic Petri-dishes (60 mm diameter × 10 mm height).
The mortality in the groups was measured daily for a period of eight days after application of the
fungus, resulting in 710 multinomial observations of length eight. Figure 1 shows the cumulative
proportion of dead termites against day for a sample of thirty isolates. Here we can see that there
are clear differences in the efficacy of the isolates and evidence of differing degrees of variability
between replicates.

As well as modelling the cumulative mortality as a function of time, a quantity of interest is the
time until a certain percentage P of the termites have died, the lethal time LTP. However, it is also
clear from Figure 1 that a single simple summary does not capture the full story and we may also
be interested in selecting isolates that are highly potent, with short lethal times, and also reliably
reproducible with low variation across replicates.

3. Models
Suppose that observations are taken on the isolates over D consecutive days and that initially there are
nik insects for the k-th, k = 1, . . . , K, replicate of isolate i, i = 1, . . . , I. Then for isolate i, we write Yik,j

as the number of dead insects on day j (j = 1, . . . , D) for the k-th replicate and Yik,D+1 = nik –
∑

D
j=1 Yik,j

as the number of insects still alive on day D. Let Rik,j denotes the cumulative proportion of insects
dead by day j. Then Rik, the D × 1 vector of cumulative proportions for replicate k of isolate i, is
given by

Rik = (Rik,1 , Rik,2 , . . . , Rik,D )T =
1

nik
LY ik, (1)

where L is a D × (D + 1) matrix containing 1’s on and below the diagonal and 0’s above, and
Y ik = (Yik,1 , Yik,2 , . . . , Yik,D+1

)T . Note that 0 ≤ Rik,1 ≤ Rik,2 ≤ . . . ≤ Rik,D ≤ 1.

3.1 Multinomial Model
In this paper we consider days as the multinomial categories with a natural increasing order from
day j = 1 to j = D. The last category D + 1 includes all of the unobserved days, arising from
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Figure 1. Examples of observed cumulative mortalilty proportions of H. tenuis over eight days for thirty typical isolates of
B. bassiana showing the five replicates (in different colours) and fitted responses (black curves).

the censoring of observations at day D. Denoting the probability of an insect dying on day j for
replicate k of isolate i by πik,j , and πik,D+1 = 1 –

∑D
j=1 πik,j, we have Y ik = (Yik,1 , . . . , Yik,D , Yik,D+1

)T ∼
Multinomial (nik;πik), with the mean vector given by E[Y ik] = nikπik = nik(πik,1 , . . . ,πik,D ,πik,D+1

)T
and covariance matrix

Var[Y ik] = nik[diag{πik} – πikπ
T
ik]. (2)

In considering the cumulative proportions Rik,j , since Rij,D+1 ≡ 1, we only need to use the first D
of these derived random variables that give the information on the observed deaths, and so Rij,D+1 is
excluded from the subsequent modelling. From the moments of the multinomial distribution, using
(1) and (2) we have

E[Rik] = E
[

1
nik

LY ik

]
=

1
nik

LE[Y ik] = Lπik = γik,

where γik,j is the cumulative probability of an insect being dead by day j for replicate k of isolate i,
and the covariance matrix is

Var[Rik] = Var
[

1
nik

LY ik

]
=

1
nik

L[diag{πik} – πikπ
T
ik]LT = V(γik), (3)

where the matrix V(γik) has elements vjj′ = vj′ j = γik,j (1 – γik,j′ )/nik, (1 ≤ j ≤ j′ ≤ D) (McCullagh &
Nelder, 1989).

For a particular isolate i and replicate k, the vector of cumulative proportions Rik will be used to
model the vector of cumulative probabilities γik = (γik,1 , . . . ,γik,D )T . Using a GLM for γik we have
g(γik) = Xikβi for some suitable link function g (logit, probit or complementary log-log), where βi
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is a m× 1 vector of parameters to be estimated and Xik is a D×m matrix of covariates. Here we use
the logit link function which gives the cumulative logistic model

g(γik,j ) = logit(γik,j ) = log

(
γik,j

1 – γik,j

)
= log


j∑

s=1
πik,s

D+1∑
s=j+1

πik,s

 = ηik,j .

The linear predictor may contain isolate specific factors and covariates to model the time depen-
dency. The model used here is an isolate specific linear time effect

ηik,j = β1i + β2i (tj – t̄),

where β1i is the baseline effect for the i-th isolate (corresponding to initial mortality on day 0), tj = j
is a quantitative variable for day j, t̄ is the mean time, and the coefficient β2i is the isolate specific
time effect. Note that these coefficients are assumed to be constant over replicates. The lethal time
for a death percentage P for the i-th isolate is

LTPi =
logit(P/100) – β1i

β2i
+ t̄.

The mean-centered time version of the model is used for computational reasons and to allow the
use of uncorrelated random effects in the model with random slope and random intercept. In the
following, for simplicity of exposition, we will use t to denote the mean-centered time (t – t̄).

3.2 Dirichlet-Multinomial Model (DM)
The standard multinomial distribution assumes that the nik responses are independent realisations
with the same probability structure, e.g., probability πik,j of dying on day j. However, because of the
experimental setup we might expect correlation between the insects with the experimental units (the
replicate petri dishes) or possibly variation across replicates because of how the treatments are applied.
Both of these aspects will lead to additional variability across the replicates giving overdispersion
relative to the standard variance function in (3). One way to allow for overdispersion is to adopt a
two-stage model in which the multinomial parameter vector is assumed to have some distribution.
This extension obviously directly allows for variation across replicates but can also be shown to
induce correlation within clusters because of the shared random effects.

Here, as a first stage, we take as the response model, Y ik | pik ∼ Multinomial(nik; pik), and then
extend this to a second stage by allowing the cell probability vector pik = (pik,1 , . . . , pik,D , pik,D+1

)T to
follow a Dirichlet distribution (Mosimann, 1962) with probability density function given by

f (pik;αi) =
Γ (
∑

D+1
j=1 αij)∏

D+1
j=1 Γ (αij)

pαi1 –1
ik,1 pαi2 –1

ik,2 ...pαiD –1
ik,D pαiD+1 –1

ik,D+1
, (4)

where αi = (αi1 , . . . ,αiD ,αiD+1 )T , 0 < pik,j < 1, αij > 0, j = 1, 2, ..., D + 1,
D+1∑
j=1

pik,j = 1,

E[pik] =
1

(
∑

D+1
j=1 αij)

αi = πik (5)
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and
Var[pik] = [diag{πik} – πikπ

T
ik]ρi, (6)

where ρi = 1/(1 +
∑

D+1
j=1 αij).

Unconditionally, Y ik follows a Dirichlet-multinomial distribution (Mosimann, 1962) with prob-
ability density function given by

P(Y ik; nik) =
(

ni
yik,1, . . . , yik,D+1

) Γ

(
D+1∑
j=1

αij

)

Γ

(
nik +

D+1∑
j=1

αij

) D+1∏
j=1

Γ
(

yik,j + αij
)

Γ
(
αij
) (7)

where 0 ≤ yik,j ≤ nik, αij > 0.
Using standard results on conditional expectations and expressions (5) and (6) from the Dirichlet

distribution, the mean vector and covariance matrix of the Dirichlet-multinomial model are given
by

E[Y ik] = E[E(Y ik|pik)] =
nik

(
∑

D+1
j=1 αij)

αi = nikπik,

and

Var[Y ik] = nik

[
diag {πik} – πikπ

T
ik

]
[1 + ρi(nik – 1)], (8)

where πik,j = αij/(
∑

D+1
j=1 αij) and ρi is an overdispersion parameter, –1/(nik – 1) ≤ ρi ≤ 1. Here,

[1 + ρi(nik – 1)] inflates the variance function of the multinomial distribution and when nik = n for
all i and k, ρi = ρ it is of the same form as the heterogeneity factor of Finney (1971). Note that the
variance function given by (8) remains valid when ρi is negative, provided that ρi ≥ –1/(nik – 1) for
all k, although this requires some of the α’s to be negative and hence can no longer be interpreted
as a mixture distribution. However, additional constraints may also be required to ensure that the
marginal probabilities given by (7) are non-negative.

In terms of the cumulative proportions vector Rik, given in (1), we have

E[Rik] = E
[

1
nik

LY ik

]
=

1
nik

LE[E(Y ik| pik)] = Lπik = γik,

and covariance matrix given by

Var[Rik] = Var
[

1
nik

LY ik

]
=

1
n2

ik
L{E[Var(Y ik|pik)] + Var[E(Y ik|pik)]}LT

=
1

nik
L
[
diag {πik} – πikπ

T
ik

]
LT[1 + ρi(nik – 1)]

= V(γik)[1 + ρi(nik – 1)], (9)

where V(γik) is given by (3). In the absence of overdispersion, e.g., ρi = 0, the covariance matrix
(9) reduces to the multinomial cumulative structure given by (3).

Note that when D = 1, (4) is a Beta(αi1 ,αi2 ) distribution with pik,2 = 1–pik,1 , E(pik,1 ) = αi1 /(αi1 +αi2 )
and Var(pik,1 ) = αi1αi2 /[(αi1 + αi2 )2(1 + αi1 + αi2 )], and then (7) gives a beta-binomial model, with
Var(Yik,j ) = nikπik,j (1 – πik,j )[1 + (nik – 1)ρi], as described by Williams (1982) and Crowder (1978) for
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overdispersed binomial data. Note that (9) also reduces to a beta-binomial model with Var(Rik,j ) =
γik,j (1 – γik,j )[1 + (nik – 1)ρi]/nik.

In the following we consider using both a Dirichlet-multinomial model where the overdisper-
sion, ρi, is allowed to vary over the isolates and also one with a single constant overdispersion term
common to all isolates, that is with ρi = ρ, for all i.

3.3 Random Intercept Model (REM I)

We can see from Figure 1 that there is considerable variability among the replicates for some isolates,
with changing level and slope for the cumulative proportion profiles. Indeed this is true for many of
the full set of 142 isolates. We can attempt to allow for this in a model by assuming that the linear
predictor, ηik, has some additional component variability. For example, incorporating an additive
random effect into the linear predictor, gives a random location shift in the baseline of each isolate
for each replicate and we have

g(qik,j ) = ηik,j + ξik = β1i + β2i tj + ξik, (10)

where qik,j =
∑j

s=1 pik,s is the cumulative probability, ξik is a random effect with E[ξik] = 0, Var[ξik] =
σ2

i and the ξik’s are independent. An obvious approach would be to assume a normal distribution
for ξik. Writing qik,j = g–1(ηik,j + ξik) = h(ηik,j + ξik) and using a first-order Taylor series expansion of

h(ηik,j + ξik) around the linear predictor ηik,j , we obtain qik,j ≈ h(ηik,j ) + h′
(ηik,j )ξik, where h′

(ηik,j ) =
∂h(ηik,j )/∂ηik,j . Then E[qik] ≈ h(ηik) = γik and

Var[qik] ≈ [h
′
(ηik)][h

′
(ηik)]Tσ2

i ,

where h
′
(ηik) = (h′

(ηik,1 ), . . . , h′
(ηik,D ))T and γik = (γik,1 , . . . ,γik,D )T , showing that Var(qik,j ) ≈

σ2
i [h′

(ηik,j )]
2 and Cov(qik,j , qik,j′ ) ≈ σ2

i h′
(ηik,j )h

′
(ηik,j′ ).

Then, the resulting marginal distribution for the cumulative response vector has mean vector

E[Rik] = E[E(Rik|qik)] = E[qik] ≈ γik

and covariance matrix given by

Var[Rik] = Var[E(Rik|qik)] + E[Var(Rik|qik)]

≈ [h
′
(ηik)][h

′
(ηik)]Tσ2

i + E[V(qik)]

= V(γik) +
(

1 –
1

nik

)
σ2

i [h
′
(ηik)][h

′
(ηik)]T , (11)

since

E[V(qik)] =
1

nik
E


qik,1 – q2

ik,1
qik,1 – qik,1qik,2 · · · qik,1 – qik,1qik,D

qik,1 – qik,1qik,2 qik,2 – q2
ik,2

· · · qik,2 – qik,2qik,D

· · · · · · · · · · · ·
qik,1 – qik,1qik,D qik,2 – qik,2qik,D · · · qik,D – q2

ik,D


= V(γik) –

1
nik

σ2
i [h

′
(ηik)][h

′
(ηik)]T ,
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where V(γik) is given by (3). In the absence of overdispersion, with σ2
i = 0, the covariance matrix

(11) reduces to the multinomial cumulative structure given by (3). When D = 1, (11) reduces to the
approximate variance function for the logistic-normal model given by Williams (1982).

3.4 Random Intercept and Random Slope Model (REM II)
The model presented in (10) incorporates a random effect for the intercept. Another possibility is to
extend this to include an additive random effect for the slope, giving a random slope effect between
the replicates for each isolate (Freitas, 2001). Then, for each isolate we can write the linear predictor
as

g(qik,j ) = β1i + ξik + (β2i + ζik)tj = ηik,j + ξik + ζiktj ,

where (ξik, ζik)T has a distribution with E[ξik] = E[ζik] = 0 and covariance matrix

Σνiτiλi =
[

ν2
i λiνiτi

λiνiτi τ2
i

]
,

where –1 ≤ λi ≤ 1 is the correlation between ξik and ζik. A particular case would be to assume a
bivariate normal distribution for (ξik, ζik)T . Writing

qik,j = g–1(ηik,j + ξik + ζiktj ) = h(ηik,j + ξik + ζiktj )

and using a first-order Taylor series expansion for the cumulative multinomial probability qik,j =

h(ηik,j + ξik + ζiktj ), around the linear predictor ηik,j , we obtain qik,j ≈ h(ηik,j ) + h′
(ηik,j )(ξik + ζiktj ).

Then E[qik] ≈ h(ηik) = γik and

Var[qik] ≈ ν2
i [h

′
(ηik)][h

′
(ηik)]T +

τ2
i {h

′
(ηik) ⊙ tik}{h

′
(ηik) ⊙ tik}T +

λiνiτi[h
′
(ηik)][h

′
(ηik)]T ⊙ [1tT

ik + tik1
T],

where 1 is a D × 1 unit column vector, tT
ik = (tik,1 , tik,2 , . . . , tik,D ) and ⊙ indicates the element by

element product operation (Hadamard product, see for example Rao, 1973). So now we have
Var[qik,j ] ≈ [h′

(ηik,j )]
2[ν2

i +τ2
i t2j +2λiνiτitj ] and Cov[qik,j , qik,j′ ] ≈ h′(ηik,j )h

′
(ηik,j′ )[ν

2
i +τ2

i tj tj′ +λiνiτi(tj +
tj′ )].

The resulting marginal distribution for the cumulative response vector has mean vector

E[Rik] = E[E(Rik|qik)] = E[qik] ≈ γik

and covariance matrix given by

Var[Rik] = Var[E(Rik|qik)] + E[Var(Rik|qik)]

≈ ν2
i [h

′
(ηik)][h

′
(ηik)]T + τ2

i {h
′
(ηik) ⊙ tik}{h

′
(ηik) ⊙ tik}T +

λiνiτi[h
′
(ηik)][h

′
(ηik)]T ⊙ [1tT

ik + tik1
T] + E[V(qik)]

= V(γik) +
(

1 –
1

nik

){
ν2

i [h
′
(ηik)][h

′
(ηik)]T+

τ2
i [h

′
(ηik) ⊙ tik][h

′
(ηik) ⊙ tik]T +

λiνiτi[h
′
(ηik)][h

′
(ηik)]T ⊙ [1tT

ik + tik1
T]
}

, (12)
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since

E[V(qik)] ≈ V(γik) –
1

nik
ν2

i [h
′
(ηik)][h

′
(ηik)]T –

1
nik

τ2
i [h

′
(ηik) ⊙ tik][h

′
(ηik) ⊙ tik]T

–
1

nik
λiνiτi[h

′
(ηik)][h

′
(ηik)]T ⊙ [1tT

ik + tik1
T],

where V(γik) is given by (3). When τ2
i = 0 the REMII model variance matrix (12) reduces to the

REMI model (11). In the absence of overdispersion, that is with ν2
i = 0 and τ2

i = 0, the variance
matrix once again reduces to the cumulative multinomial variance structure given by (3).

Here we simplify matters by assuming uncorrelated random effects, taking λi = 0; a reasonable
assumption when working with the centered version of time as the covariate. Hence we only need
to estimate the variances ν2

i and τ2
i .

4. Estimation
Here we outline the parameter estimation procedures for the models discussed in Section 3. For
the B. bassiana bioassay, because of the equal sample sizes, we have a simple constant overdispersion
factor for the DM model. Standard QL techniques (McCullagh & Nelder, 1989) give estimates of
the vector of regression coefficients and moment methods can be used to estimate the overdispersion
parameter.

The GEEs for the vector of regression coefficients (Liang & Zeger, 1986) are given by

U(βi) =
K∑

k=1

[
∂γik
∂βT

i

]
[Var(Rik)]–1(rik – γik)

=
K∑

k=1

XT
ik∆

–1
ik [VOD

ik ]–1(rik – γik) = 0, (13)

where Xik is a D × m matrix of covariates that includes functions of time, ∆ik = diag{∂ηikj /∂γikj } is
a D × D diagonal matrix, VOD

ik is given by (9), (11) or (12) and rik is the D × 1 vector of observed
cumulative proportions of insects dead by the jth day. Even when VOD

ik is misspecified, E[U(βi)] = 0
and hence the QL estimate (13) is consistent.

Fixing ρi, σ2
i or {ν2

i , τ2
i }, the estimate β̂i is found by an iterative weighted least squares proce-

dure, where the iterative equations for βi are given by

β̂
(s+1)
i =

 K∑
k=1

XT
ikW

OD
ik Xik

–1 K∑
k=1

XT
ikW

OD
ik zik, (14)

with
WOD

ik = ∆–1
ik
[
VOD

ik
]–1

∆–1
ik ,

where zik = Xikβ̂
(s)
i +∆ik(rik –γik) with both ∆ik and γik evaluated at the current estimate β̂

(s)
i . The

estimated asymptotic covariance matrix of β̂i is given by

M0 =

 K∑
k=1

XT
ik∆

–1
ik [VOD

ik ]–1∆–1
ik Xik

–1

. (15)
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In Liang & Zeger (1986) it is shown that under mild regularity conditions, β̂i, the solution of
(13), is consistent and asymptotically multivariate Gaussian with covariance matrix given by the
sandwich estimator S = M0M

–1
1 M0, where M0 is given by (15) and

M1 =

 K∑
k=1

XT
ik∆

–1
ik [VOD

ik ]–1(rik – γ̂ik)(rik – γ̂ik)T[VOD
ik ]–1∆–1

ik Xik

–1

.

Note that this is robust to the choice of VOD
ik .

For the DM model we use a moment method (Moore, 1987; Williams, 1982) to estimate the
overdispersion parameter in (9). Equating the Pearson’s chi-square statistic X2 to its expected value
(solving the equation X2 = E(X2)) gives an estimating equation for ρi

K∑
k=1

(rik – γ̂ik)TV–1(γ̂ik)(rik – γ̂ik)
1 + (nik – 1)ρ̂i

= KD – m

and for nik = n the estimate of the overdispersion parameter is given by

ρ̂i =
1

n – 1

 K∑
k=1

(rik – γ̂ik)TV–1(γ̂ik)(rik – γ̂ik)
KD – m

– 1

 . (16)

In general we could iterate between solving (16) and estimating βi from (14), with updated zik
andWOD

ik , until convergence. However here, sinceVOD for the DM model is only a constant multiple
of the base multinomial variance matrix V, the βi estimate is identical to that from the multinomial
model. So we simply need to use these estimates and solve (16) to find the ρ̂i; there is no need for
iteration.

For the REMI model (11) using the moment method to estimate σ2
i leads to the following iter-

ative estimating equation where at the (s + 1)-th step

σ2
i (s + 1) =

1
K – 1

K∑
k=1

σ2
i (s)[h′(η̂ik)T (rik – γ̂ik)]2

h′(η̂ik)TVI
ik(s)h′(η̂ik)

,

where VI
ik(s) is given by (11) evaluated at σ2

i (s) the current estimate of σ2
i . However, as the linear

predictor is identical for each replicate we have ηik = ηi and also V I
ik only depends on the isolate i,

the above estimating equation simplifies and leads to a closed form solution

σ̂2
i =

1
K – 1

K∑
k=1

[
h′(η̂i)

T (rik – γ̂ik)
]2

– h′(η̂i)
TV ih

′(η̂i)(
1 –

1
n

)[
h′(η̂i)Th′(η̂i)

]2 .

Similarly, to estimate ν2
i and τ2

i in the REMII model (12) the iterative equations are

ν2
i (s + 1) =

1
K – 1

K∑
k=1

ν2
i (s)[h′

(η̂ik)T (rik – γ̂ik)]2

h
′ (η̂ik)TVII

ik(s)h′ (η̂ik)
(17)

and

τ2
i (s + 1) =

1
K – 1

K∑
k=1

τ2
i (s)[(h′

(η̂ik) ∗ tik)T (rik – γ̂ik)]2

[h′ (η̂ik) ∗ tik]TVII
ik(s)[h′ (η̂ik) ∗ tik]

, (18)
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where VII
ik(s) is given by (12) evaluated at the current estimates ν2

i (s) and τ2
i (s). Again, taking

advantage of the model simplifications gives a simple iterative scheme for updating the variance
parameters at each step of the overall estimation process. Moreover, because of the simple regular
structure here, after some algebra solving the joint estimating equations for ν2

i and τ2
i in (17) and

(18), we are able to obtain closed form estimates for these random effect variance, see Appendix 1
for details.

5. Results
Fitting the four models described in Section 3 to the 30 isolates shown in Figure 1 we find that for
each isolate the estimated regression parameters (β1i and β2i ) are identical. That the multinomial and
Dirichlet-multinomial models give identical estimates is to be expected because of the proportional
variance matrices, although it is somewhat surprising that it should also be true for the REMI and
REMII models and this aspect is explored in Section 6. With the identical parameter estimates the
fitted responses (as shown in Figure 1) are also identical, as are the estimated LT50s. Where the
models do differ is in the estimated overdispersion parameters and resulting asymptotic covariance
matrices and, hence, in the estimated asymptotic standard errors for the regression parameters, the
fitted curves, and the LT50s. However, it turns out that the robust sandwich estimator covariance
matrices are also identical over the four models; a property that is also explored in Section 6.

Table 1. Summary Statistics for estimated overdispersion parameters of DM, REMI and REMII models, in which the overdis-
persion is allowed to vary over isolates, and estimated LT50.

Model Overdispersion Estimate
Parameter Mean Median Min. Max.

DM ρi 0.1156 0.1227 0.0156 0.2996

REMI σ2
i 1.0338 0.7294 0.0874 3.0359

REMII ν2
i 0.8728 0.6096 –0.4268 3.0359

τ2
i 0.0615 0.0328 –0.0513 0.3867

LT50 7.3007 6.7297 4.1743 11.7718

In Table 1 we present summary statistics for the various overdispersion parameters for the Dirichlet-
multinomial, REMI, and REMII models. These parameters reflect a combination of the replicate
variability and the lack of fit of the fitted responses to the mean response for each isolate. What is
clear from this table is the wide range of values reflecting what is seen in Figure 1; some of the isolates
exhibit very little variation over the replicates, while others are very disparate. The other notable
aspect in this table is that from the REMII model some of the isolates lead to negative values of ν2

and/or τ2. This of course contradicts the conditional model formulation where these are interpreted
as variances. However, with the GEE fitting approach adopted here these are really only additional
parameters in an extended variance function and they are not constrained to be positive; the only
constraint is that the resulting overdispersed variance matrix, VOD, should be positive definite.

As noted in the original discussion of the data, a simple aim of the study is to select effective
isolates that are reliable with low variation across replicates. A simple summary of the efficacy is the
estimated LT50 (identical across all models) and the estimated overdispersion parameters provide a
simple and useful summary of the variability. For illustration we use the σ2

i from the REMI model.
Figure 2 shows a plot of these quantities for the 30 isolates under consideration. The points are
plotted with the isolate codes, which allows reference back to the raw data displayed in Figure 1.
Focussing on those isolates with an estimated LT50 <6 (based on the range of values in Table 1) and
σ̂2

i < 1 we see that these isolates (602, 738, 743, 787, 841, 845, 848, 1028) do indeed correspond to
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Figure 2. REMI fitted model: estimated LT50 values for isolates versus estimated random effect variances σ̂2. The colours
indicate different groups of isolates, with blue corresponding to the effective, consistent ones.

those which are effective and relatively consistent. There is a single isolate (732) which is effective
with a small LT50, but has relatively large variability. There is also a further group of three isolates
(822, 823, 876) with low variability but LT50s slightly greater than 6. Of course, the setting of
thresholds, as here, is somewhat arbitrary but it does give a coherent method for selecting and
screening isolates and is easily applied to larger datasets, such as the full set of 142 isolates.

All computations reported in this paper were carried out in R (R Development Core Team,
2010). Data and code will be made available in due course.

6. Theoretical discussion of results
In the previous Section we noted that the linear predictor parameter estimates from all of the models
are identical. It is not surprising that they are similar as generalized least-squares estimates are not
very sensitive to the precise form of the variance (weight) matrix, however that they are identical
is more notable. The second surprising outcome is that the robust standard errors are also identical.
The same behaviour is found with the data set from O’Hara Hines & Lawless (1993) when excluding
all the covariates from the model and fitting just time. Examination of the model based (asymptotic)
standard errors suggested that there were also simple relationships between these across the different
models. There is clearly something special going on here and this was found to depend on the
special regular form of the data and certain aspects of the different models being considered. Key to
understanding this are the mathematical results stated in the next section (with associated proofs in
Appendix 2). In its simplest form this is related to the results in McElroy (1976), Rao’s special form
of covariance matrix (Rao, 1967) and also the work of Lange & Laird (1989), who consider balanced
growth curve models for normally distributed responses. Here the details are somewhat different as
we are working in the iterative framework of GEE for non-normal responses.
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6.1 A Matrix Result
For each isolate, the model fitting used in this paper is an iterative application of generalized least-
squares where for a variance matrix V we have

β̂ = (XTV–1X)–1XTV–1z.

If we now consider fitting variants of this with a modified variance function

Ṽ = V + XCXT

for some specified matrix C, then the resulting parameter estimate is given by

β̃ = (XTṼ–1X)–1XTṼ–1
z.

The, somewhat, surprising results are:

• the parameter estimates from the two fits are the identical, i.e. β̃ = β̂;
• the model-based asymptotic covariance matrix

M0 =
(
XTWX

)–1

and that for the modified variance matrix Ṽ

M̃0 =
(
XTW̃X

)–1

are simply related with
M̃0 = M0 + C;

• the robust sandwich variance matrices S and S̃ are identical.

We now consider how these results apply to the various models considered here and explain the
observed relationships between the various fits.

6.2 Application to GEE for Cumulative Multinomial
The first simplification here is that every isolate has the same set of covariates and so we can write
Xik = X and further within each isolate the replicates have identical linear predictors, that is γik = γi
for k = 1, . . . , K. Hence, the score function for βi can be written as

U(βi) =
K∑

k=1

XT∆–1
i [VOD

i ]–1(rik – γi) = KXT∆–1
i [VOD

i ]–1 (̄ri – γi)

where r̄i are the mean cumulative proportions for the ith isolate. The iterative estimating equation
(14) for βi can then be written as

β̂
(s+1)
i =

(
KXTWOD

i X
)–1

KXTWOD
i z̄i =

(
XTWOD

i X
)–1

XTWOD
i z̄i,

where z̄i = Xβ̂
(s)
i +∆i (̄ri –γi) and WOD

ik = WOD
i = ∆–1

i
[
VOD

i
]–1

∆–1
i . Note that z̄i only depends upon

the current parameter estimates, the data (response and explanatory variables) and the link function.
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The estimated asymptotic covariance matrix of β̂i is given by

MOD
0,i =

 K∑
k=1

XT∆–1
i [VOD

i ]–1∆–1
i X

–1

=
1
K

(
XTWOD

i X
)–1

and the sandwich filling reduces to

MOD
1,i =

 K∑
k=1

XT∆–1
i [VOD

i ]–1(rik – γ̂i)(rik – γ̂i)
T[VOD

i ]–1∆–1
i X

–1

=

XT∆–1
i [VOD

i ]–1


K∑

k=1

(rik – γ̂i)(rik – γ̂i)
T

 [VOD
i ]–1∆–1

i X

–1

.

6.3 DM
For the Dirichlet - Multinomial model VOD

i is simply a scaled version of V(γi) with multiplicative
scale factor 1 + ρi(n – 1) and so we have WOD

i = Wi/[1 + ρi(n – 1)]. Hence the ρi cancels in
estimating equation for βi giving identical parameter estimates as for the basic multinomial model.
The estimated asymptotic covariance matrix of β̂i is scaled by 1 + ρi(n – 1) giving standard errors
that are inflated by a factor of

√
1 + ρi(n – 1). However, in calculating the robust standard errors the

scaling factor cancels in the sandwich estimator expression for Cov∗i so the robust standard errors are
identical to those from the multinomial model, which is consistent with the notion of these being
in some sense robust to the choice of variance function.

6.4 REM models
For isolate i and the REM models we have

VOD
i = V i + additional terms,

where V i = V(γi) is the variance matrix for the basic cumulative multinomial model. Subsequently,
for REMI and REMII we will show that these are in the special form required to apply the matrix
results from Section 6.1. In particular we can express these as

∆iVOD
i ∆i = ∆iV i∆i + XCiXT ,

where Ci depends on the particular approximate random effects model and the isolate. When this
relationship holds, for a common zi the variance matrices V i and VOD

i will give the same parameter
estimate updates and so will define the same iterative path and converge to identical parameter
estimates β̂i and β̂

OD

i . Further, because of the regular replicate structure, the asymptotic covariance
matrices

M0,i =
1
K

(
XTW iX

)–1
and MOD

0,i =
1
K

(
XTWOD

i X
)–1

will be related by

MOD
0,i = M0,i +

Ci
K

.

Finally, the robust (sandwich) covariance matrix estimates will be identical

Si = M0,iM
–1
1,iM0,i = MOD

0,i
(
MOD

1,i
)–1

MOD
0,i = SOD

i .
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6.4.1 REMI
Here we have

VI
i = V i +

(
1 –

1
n

)
σ2

i h
′
ih

′
i
T ,

where h′
i = ∂hi/∂ηi. In the iterative estimation procedure we have ∆i = diag(∂ηi/∂/γi) so ∆–1

i =
diag(∂γi/∂/ηi) = diag(h′

i) giving h′
i = ∆–1

i 1 and ∆ih′
i = 1. Hence,

∆iVI
i∆i = ∆iV i∆i +

(
1 –

1
n

)
σ2

i ∆ih
′
ih

′
i
T
∆i

= ∆iV i∆i +
(

1 –
1
n

)
σ2

i 11
T

and noting that here X has the simple form X = [1, t] for all isolates, we can write

∆iVI
i∆i = ∆iV i∆i + XCI

iX
T ,

where

CI
i =

[ (
1 – 1

n

)
σ2

i 0
0 0

]
.

Hence, we have the modified iterative variance function ∆iVOD
i ∆i of precisely the form to apply

the results of Section 6.1, with the C matrix having a very simple form.
So all of the previously discussed results will apply: the parameter estimates will be identical to

those from the basic multinomial model; the robust sandwich covariance matrices, and hence robust
standard errors, will be identical; finally, taking account of the K = 5 replicates, the model based
asymptotic covariance matrices will be related through

MI
0 = M0 +

CI
i

5
= M0 +

1
5

[ (
1 – 1

n

)
σ2

i 0
0 0

]
.

So the only impact is on the variance estimate (standard error) for the intercept term β0,i and we
have

seI (β̂0,i) =

√
se(β̂0,i)2 +

1
5

(
1 –

1
n

)
σ̂2

i .

For illustration, we consider isolate 848 where se(β̂1,i) = 0.1452, seI (β̂1,i) = 0.2012, and σ̂2 = 0.1002
and we have √

se(β̂1,i)2 +
1
5

(
1 –

1
n

)
σ̂2

i =

√
0.14522 +

1
5

(
1 –

1
30

)
0.1002 = 0.2012,

giving the expected agreement. In addition, the standard error for the time coefficient β1,i is un-
changed at 0.0378.

6.4.2 REMII
Using the mean-centered version of time and assuming uncorrelated random effects for the slopes
and intercept (i.e. λi = 0) the REMII variance function can be expressed as

VII
i = V i +

(
1 –

1
n

){
ν2

i h
′
ih

′
i
T + τ2

i [h′ ⊙ t][h′ ⊙ t]T
}

.
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In the same way as above we can now write

∆iVII
i ∆i = ∆iV i∆i +

(
1 –

1
n

){
ν2

i ∆ih
′
ih

′
i
T
∆i + τ2

i [∆ih
′ ⊙ t][∆ih

′ ⊙ t]T
}

= ∆iV i∆i +
(

1 –
1
n

){
ν2

i 11
T + τ2

i [1⊙ t][1⊙ t]T
}

= ∆iV i∆i +
(

1 –
1
n

){
ν2

i 11
T + τ2

i tt
T
}

.

Again noting that X = [1, t] we can write the above as

∆iVII
i ∆i = ∆iV i∆i + XCII

i X
T ,

where

CII
i =

(
1 –

1
n

)[
ν2

i 0
0 τ2

i

]
.

Then from the general results, as with REMI, the parameter estimates and robust standard errors
are unchanged and the asymptotic covariance matrices are related by

MII
0 = M0 +

CII
i

5
= M0 +

1
5

(
1 –

1
n

)[
ν2

i 0
0 τ2

i

]
,

with the respective variance parameter estimates modifying the standard errors in quadrature. For
illustration with isolate 848 ν̂2

i = 0.0968 and τ̂2
i = 0.0121 giving

seII (β̂1,i) =

√
se(β̂1,i)2 +

1
5

(
1 –

1
n

)
ν̂2

i =

√
0.14522 +

1
5

(
1 –

1
30

)
0.0968 = 0.1995

and

seII (β̂2,i) =

√
se(β̂2,i)2 +

1
5

(
1 –

1
n

)
τ̂2

i =

√
0.03782 +

1
5

(
1 –

1
30

)
0.0121 = 0.0614,

both of which are in agreement with the results from the iterative fitting process.

7. Final Remarks

This paper focusses on a specific set of overdispersed multinomial models for what is essentially
longitudinal grouped mortality data. There are many other related approaches that can be taken for
data of this form. In a forthcoming paper, Fallah et al. (2023), we consider and compare the use of
ordinal data models (as in Martinez & Hinde, 2014) and discrete survival models again incorporating
random effects, but for both replicates and isolates. In addition, we consider the use of arbitrary
random effects for isolates using non-parametric maximum likelihood estimation (NPMLE), see
Einbeck et al. (2018), which allows for implicit clustering of the isolates and a more systematic
approach to the selection of the best, rather than the more ad hoc approach adopted in Section 5.

Another open topic is that of model fit and model diagnostics. O'Hara Hines et al. (1992) con-
sider these aspects for fitting the basic multinomial model to similar grouped cumulative mortality
data. Because of the replication it is possible to decompose an overall goodness of fit measure, such as
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deviance or generalized Pearson statistic, into a lack of fit term based on the mean proportions over
the replicates and a term capturing the replicate variability. The first terms allows a comparison of
the fit from alternative linear predictors, as in Martinez & Hinde (2014), and it would, in principle, be
possible to estimate overdispersion parameters and random effect variances from the replicate vari-
ability. Here, we took a simpler approach basing overdispersion parameter estimation on the overall
residual lack of fit, as is common in applications of overdispesion models. Diagnostic assessment of
model fit and the adequacy of specific overdispersion models could also, in principle, be explored us-
ing half-normal plots as in Salvador et al. (2022) for standard multinomial and Dirichlet-multinomial
models. To apply such methods here would require extending the approach to the cumulative type
of response considered here through, for example, providing these new model types for the hnp

package (Moral et al., 2017) in R.
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Appendix 1: REMII estimates

For the REMII model taking advantage of the model simplifications gives a simple iterative scheme
for updating the variance parameters at each step of the overall estimation process. Because of the
simple regular structure here, after some algebra solving the joint estimating equations for ν2

i and
τ2

i in (17) and (18), we are able to obtain closed form estimates for these random effect variances.
While written in full these have a complicated appearance, by defining some key expressions these
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can be written in a fairly simple overall form. We first define the key components

SSh =
1

K – 1

K∑
k=1

[
h

′
(ηik)T (rik – γik)

]2

SSht =
1

K – 1

K∑
k=1

[(
h

′
(ηik)T ∗ t

)
(rik – γik)

]2

H =
[
h

′
(ηik)Th

′
(ηik)

]2

Htt =
[(

h
′
(ηik)T ∗ t

)T (
h

′
(ηik)T ∗ t

)]2

Ht =
[(

h
′
(ηik)T ∗ t

)T
)h

′
(ηik)

]2

Vh = h
′
(ηik)TVikh

′
(ηik)

Vh,tt =
(
h

′
(ηik)T ∗ t

)T
Vik

(
h

′
(ηik)T ∗ t

)

ν2
i =

Htt(SSh – Vh) – HtSSht(
1 – 1

n

)
{HHtt – H2

t }

and

τ2
i =

H(SSht – Vh,tt) – HtSSh(
1 – 1

n

)
{HHtt – H2

t }
.

Appendix 2: Proofs of theoretical matrix results
We begin by considering a generalized weighted least-squares fit of a working response vector z

β̂ = (XTWX)–1XTWz,

where the weight matrix W is based on a variance matrix V = W–1. We consider specific modifi-
cations of the variance matrix of the form

Ṽ = V + XCXT (19)

and are interested in how using the corresponding weight matrix W̃ = Ṽ–1
affects the parameter

estimates, the asymptotic covariance matrix and the robust sandwich covariance matrix.

Pre- and post-multiplying (19) by Ṽ–1
and V–1 respectively gives an expression linking the

inverse variances
Ṽ–1

= V–1 – Ṽ–1XCXTV–1,

or in terms of the weight matrices weights

W̃ = W – W̃XCXTW.
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Parameter estimates
We define the parameter estimate based on the modified variance matrix as β̃ with

β̃ = (XTW̃X)–1XTW̃z.

We now consider how this differs from the original estimate β̂

(XTW̃X)(β̃ – β̂) = XTW̃z – (XTW̃X)β̂

= XTW̃(z – Xβ̂) = XTW̃
(
z – X(XTWX)–1XTWz

)
=
[
XTW̃ – XTW̃X(XTWX)–1XTW

]
z

=
{
XTW̃W–1 – XTW̃X

[
(XTW̃X)–1 – C

]
XT
}
Wz

=
[
XTW̃W–1 – XT + XTW̃XCXT

]
Wz

=
[
XTW̃

(
W–1 + XCXT

)
– XT

]
Wz

=
[
XTW̃W̃–1 – XT

]
Wz

= (XT – XT )Wz = 0

⇒ β̃ = β̂.

So the parameter estimates are unchanged.
Note also that if this forms part of an iterative estimation procedure, as in iteratively weighted

least-squares, then, given the same starting values, the two variance functions will lead to the same
iterative sequence and converge to the same final estimates.

Asymptotic covariance matrices
The asymptotic covariance matrix for the original variance matrix is given by

M0 =
(
XTWX

)–1

and for the modified variance matrix Ṽ we define

M̃0 =
(
XTW̃X

)–1
.

Again looking at the difference in these matrices we have

M̃0 – M0 =
(
XTW̃X

)–1 [
XTWX – XTW̃X

] (
XTWX

)–1

=
(
XTW̃X

)–1 [
XTW̃

(
W̃–1 – W–1

)
WX

] (
XTWX

)–1

=
(
XTW̃X

)–1 (
XTW̃X

)
C
(
XTWX

)(
XTWX

)–1

= C.

So we have a very simple relationship between the covariance matrices

M̃0 = M0 + C.
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Robust (sandwich) covariance matrices
The two sandwich covariance matrix estimates can be written as

S = M0XTWRWXM0

S̃ = M̃0XTW̃RW̃XM̃0,

where R is a matrix of cross-products of residuals, which is identical for both settings as the param-
eter estimates, and hence fitted values, are the same.

Using the result that W̃ = W – W̃XCXTW, we can write

S̃ = M̃0XTWRW̃XM̃0 – M̃0M̃
–1
0 CXTWRW̃XM̃0

= M0XTWRW̃XM̃0 + CXTWRW̃XM̃0 – CXTWRW̃XM̃0

= M0XTWRW̃XM̃0

and proceeding in a similar fashion for the remaining W̃,

S̃ = M0XTWRWXM0 = S.

The robust covariance matrices are identical under each specification.
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