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 ABSTRACT: Rice (Oryza sativa L.) has been one of the most consumed foods on the planet, 

with economic and social importance. Diseases, mainly blast, caused by the fungus Pyricularia 

oryzae, are limiting factors for the production of rice. The present work aimed to select 

covariables that can influence resistance to rice blast, using the selection strategy proposed by 

Collett. Logistic regression models were adjusted to predict disease resistance, using the ROC 

curve to assess the predictive capacity. The data used were obtained from a population of 413 

plants, with phenotypic information collected in 82 countries and classified into five 

subpopulations. The research found that, out of over fifteen variables embedded to assess the 

disease, only three revealed to be relevant for the final adjusted model, namely: width of flag leaf 

(V4), the mean number of primary panicle branches (V8) and the amount of amylose from 

ground grains (V15). The variable V4 presented the most significant influence on disease 

resistance. Additionally, for each unit increase in V4, V8 and V15, it is expected to obtain 279.3, 

31.9 and 9.4% increases, respectively, in the probability of resistance to rice blast. 
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1 Introduction 

Throughout history, rice (Oryza sativa L.) has been one of the most consumed foods 

on the planet, presenting fundamental economic and social importance. The cereal 

supplies at least half the energy calorie of the world population, mainly for the poverty-
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stricken populations of countries in tropical and subtropical regions, and the so-called 

emerging or developing countries. In Asia, where 90% of this cereal is grown, the average 

per capita consumption is high, 78kg, while in Latin American countries, the average per 

capita consumption is around 29kg, with emphasis in Brazil, considered a great consumer 

of rice, with an average consumption of 32 kg/person/year (SOSBAI, 2018).  

At all stages of growth and development of this culture, biotic and abiotic factors have 

directly impacted the availability of this food. The factors limiting the productive potential 

of rice include diseases, mainly blast, which is caused by the fungus Pyricularia oryzae. It 

is the most significant cause of damage both in productivity and grain quality, 

compromising up to 100% of production, in terms of conditions susceptible to the disease 

(LAW et al., 2017; SOSBAI, 2018). 

The extent of the damage caused by blast depends on the degree of susceptibility of 

the cultivar, climatic conditions and cultural practices adopted. Despite all research efforts 

aimed at developing cultivars resistant to blast, the disease remains one of the main 

factors limiting rice productivity in Brazil and other countries (LAW et al., 2017; SILVA-

LOBO et al., 2012). 

The logistic regression technique is the statistical method most widely used to verify 

the relationship between a binary or dichotomous response variable and explanatory of 

interest. For example, when disease resistance is assessed in locations where the response 

variable is dichotomous, there are usually two possible responses: resistance (𝑦 = 1), and 

the susceptible complementary result (𝑦 = 0). 

When a diagnostic test is developed, it is necessary to evaluate its ability to correctly 

classify individuals into two groups (̂𝑦̂ = 0 ∨ 𝑦̂ = 1), based on the concepts of sensitivity 

and statistical specificity, obtained from the construction of confusion matrices, generated 

by the model. According to Martinez et al. (2003), a widespread tool for assessing the 

predictive ability of a model with binary responses is the analysis of the ROC curve 

(Receiver Operating Characteristic). The ROC curve surged from the theory of signal 

detection in the early 1950s. Its initial application is dated from the early 1960s in the 

field of medicine. Since then, the logistic regression technique and ROC curve started to 

be used in several areas. Yu et al. (2014) utilized the ROC curve in the selection and 

classification of markers. Similarly, Kim (2019) utilized the ROC curve in the 

classification of Asian rice (Oryza sativa) accessions in two subpopulations: indica and 

japonica. 

Currently, logistic regression and ROC curve techniques are widely used in medical 

biotechnology, but little used in agricultural sciences. Therefore, the present work aimed 

to select covariates that can influence the resistance to blast and build models to estimate 

and evaluate this resistance. 

2 Material and methods 

The set of phenotypic data used was initially generated and analyzed by Zhao et al. 

(2011). It is composed of a population of 413 rice plants (Oryza sativa L.) from 82 

countries. The data set was formed according to the following subpopulations: mixed 

(62), aromatic (14), aus (57), indica (87), tempered japonica (96), and tropical japonica 

(97).  Japonica temperate and tropical japonica were combined in japonica, summarizing 

the variation of global plant genetics. The phenotypic evaluation of rice was carried out in 
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Stuttgart (Arkansas, USA) from May to October in 2006 and 2007. Two repetitions per 

year were grown in a randomized block design, in 5m plots, with 25cm spacing between 

plants and 0.50m between rows. Therefore, the evaluation of resistance of the rice blast 

involved a sample of sixteen quantitative and categorical variables related to the leaf, seed 

morphology, yield components, grain quality and level of susceptibility to rice blast 

disease. 

The susceptibility to the disease was rated on a scale of "0" (without lesions of the 

disease) to "9" (total plant death), when the plants were between three and four weeks old, 

as described by Marchetti et al. (1987). The scale was converted as response (resistant or 

susceptible plant), according to the size and characteristics of the injuries, as presented by 

Mackill and Bonman (1992). Thus, plants belonging to classes 0, 1 and 2 were reclassified 

as resistant (𝑦 = 1) and plants from classes 3 to 9 were reclassified as susceptible (𝑦 = 0). 

To obtain a parsimonious model (lesser number of covariates) that keeps accuracy in 

the prediction results, a plan must be developed for the selection of the initial covariates 

that will be tested and a method that assists in the selection and adequacy of these 

covariates (HOSMER JUNIOR et al., 2013). Some methods commonly used for the 

selection of covariates are forward, backward and stepwise, whose algorithms are 

implemented in various computer programs. However, these methods present some 

disadvantages, as they tend to identify a particular set of covariates, instead of possible 

equally good sets, to explain the variable answer, making it impossible for the researcher 

to choose the most relevant covariates in his practice area (COLOSIMO and GIOLO, 

2006). 

In this study, the covariate selection strategy proposed by Collett (2003) was used and 

described by Colosimo and Giolo (2006), in which the information of the researcher can 

be included in the decision-making process. Thus, it involves more active participation of 

the statistician and the researcher at each step of the selection process. It can include, for 

example, covariables considered necessary in the study. According to Colosimo and Giolo 

(2006), when using this covariate selection procedure, one should avoid being very strict 

when testing the individual level of significance. The decision of whether a term should 

be included in the model must be followed by a reasonable (not too low) level of 

significance; usually, values close to 0.10 are recommended. Gouvêa et al. (2009) used 

this covariate selection strategy to study the variables that affect the time until death or 

transplantation in patients with chronic renal failure. 

The binary response variable evaluated was resistance to rice blast disease, caused by 

the fungus Pyricularia oryzae (𝑦 = 0: susceptibility, 𝑦 = 1: resistance). The following 

qualitative and quantitative information of the plants constituted the variables: 

V1: Stalk habit: average stalk angle of plants at maturity; 

V2: Pubescence of the leaf (0: Absence, 1: Presence); 

V3: Length of the flag sheet (cm); 

V4: Width of the flag sheet (cm); 

V5: Average number of panicles (inflorescences) per plant; 

V6: Height of the plant (cm); 

V7: Panicle length (cm); 

V8: Mean number of branches of the primary panicle; 

V9: Average number of seeds per panicle; 

V10: Seed length with shell (mm); 

V11: Seed width with shell (mm); 
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V12: Volume of seed with husk; 

V13: Surface area of the seed with husk; 

V14: Seed length / width ratio; 

V15: Amylose quantity present in the ground grains (%). 

 

In the logistic model in which the response variable (y) is binary or dichotomous, its 

mean conditional must be greater than or equal to zero and less than or equal to one, that 

is 0 ≤ 𝐸(𝑌𝑖|𝑋) ≤ 1. However, assuming 𝑌𝑖~ 𝐵𝑒𝑟𝑛(𝜋𝑖), the probability of success 

(occurrence of the event of interest, that is, resistance to rice blast disease), according to 

logistic regression model, can be defined as: 

 

𝜋𝑖 = 𝜋(𝑥i) = 𝑃(𝑌𝑖 = 1|𝑋 = 𝑥𝑖) =
𝑒𝑥𝑝 (𝛽0+𝛽1𝑥𝑖)

1+𝑒𝑥𝑝(𝛽0+𝛽1𝑥𝑖)
, i = 1, 2, ..., n    (1) 

 

Furthermore, we can obtain the probability of failure (susceptibility to the disease) by 

difference: 

1 − 𝜋𝑖 = 𝑃(𝑌𝑖 = 0|𝑋 = 𝑥𝑖) =
1

1 + 𝑒𝑥𝑝(𝛽0 + 𝛽1𝑥𝑖)
 (2) 

where, 𝛽0 and 𝛽1 are two unknown parameters. 

 

A measure widely used in logistic regression is the Odds ratio (OR), which can be 

obtained from the ratio between (Eq. 1) and (Eq. 2), given by: 

𝜋𝑖

1−𝜋𝑖
= 𝑒𝛽0+𝛽1𝑥𝑖     (3) 

Since (Eq. 1) is non-linear, a transformation called logit is applied, defined by g(x), to 

make the model linear in its continuous parameters and make it assume values between 

−∞ and −∞, depending on the limit of the variable, as presented below: 

𝑔(𝑥) = 𝑙𝑛 (
𝜋𝑖

1 − 𝜋𝑖

) = 𝛽0 + 𝛽1𝑥𝑖  (4) 

where 𝑔(𝑥) = 𝑙𝑛(𝜋𝑖/1 − 𝜋𝑖) is the canonical link function for the binomial model 

(HOSMER JUNIOR et al., 2013). 

For this reason, when interpreting the logistic regression coefficients, one opts for the 

interpretation of 𝑒𝑥𝑝(𝛽) and not directly of 𝛽. Ayres et al. (2005) reported that the reason 

of chance is a measure of straightforward interpretation, with statistical properties 

fundamental for several studies. 

In the presence of p independent variables denoted as a vector 𝑿𝒊
′ =

(𝑥0𝑖 , 𝑥1𝑖 , 𝑥2𝑖 , … , 𝑥𝑝𝑖  ) and vectors of unknown parameters denoted by 𝜷′ =

(𝛽0, 𝛽1, 𝛽2, … , 𝛽𝑝) categorical or continuous, the logistic model establishes a relationship 

between these 𝑝 variables and the probability of successful occurrence of a dependent 

variable binary or dichotomous. So, we can rewrite (𝜋𝑖)  as follows: 

𝜋𝑖 = 𝑃(𝑌 = 1) =
𝑒𝑥𝑝(𝑿𝒊

′𝜷)

1 + 𝑒𝑥𝑝(𝑿𝒊
′𝜷)

 (5) 
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In each step of the covariate selection process, the likelihood ratio test (LRT) was 

used, in which the statistics of the test is given by the difference between the deviances of 

the two models to be compared. This difference has a chi-square distribution with the 

number of degrees of freedom given by the difference between the number of parameters 

of the two models. LRT compares only models with the same hierarchical or nested 

structure (HOSMER JUNIOR et al., 2013). 

The following expression defines the deviance of a model: 

𝐿𝑅𝑇 = −2 𝑙𝑛 (
𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑜𝑓 𝑡ℎ𝑒 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑚𝑜𝑑𝑒𝑙

 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑒𝑑 𝑚𝑜𝑑𝑒𝑙
 ) (6) 

in which the adjusted model has unknown 𝑝 parameters, 𝑝 is the number of covariables 

included in the model, and the saturated model has 𝑛 unknown parameters, where 𝑛 is the 

number of observations. The LRT statistic has a chi-square distribution with 𝑛 − 𝑝 

degrees of freedom and plays the same role as the sum of squares of residues in linear 

regression (HOSMER JUNIOR et al., 2013). After selecting the covariates using the 

proposal of Collett (2003), the quality of adjustment of the final model was verified 

through the Hosmer and Lemeshow test and the ROC curve, that is, if the model was 

efficient to describe the relationship between the predictor variables and the response 

variable. 

The Hosmer and Lemeshow test corresponds to a chi-square test with 𝑔 − 2 degrees 

of freedom and consists of dividing the number of observations into ten groups (𝑔 = 10) 

and then compare the predicted frequencies with those observed. The purpose of this test 

is to check if there are significant differences between the classifications performed by the 

model and the observed reality. For this test, the generalhoslem package (Jay, 2019) of the 

R software (R Core Team, 2020) is used. 

 Hence, to estimate and evaluate the resistance of plants, models that best described 

the relationship between the predictor variables and the response variable were selected 

based on the Hosmer and Lemeshow test, at the level of significance of 0.05. 

Besides, the values of the Akaike information criterion (AIC) for the selected 

models were utilized based on the concept of information entropy. The AIC criteria offer 

a relative measure of information that is lost when a model is used to describe reality 

(Akaike, 1974), and is calculated from the expression: 

𝐴𝐼𝐶 = −2 𝑙𝑜𝑔 𝐿(𝛽̂) + 2𝑝 (7) 

where L(β̂) is the maximum value of the likelihood function and p is the number of 

parameters of the model. 

According to Burnham and Anderson (2004), the AIC criterion provides an effective 

means for comparing models, and its operation is based on estimating the information lost 

by the model (the less information a model loses, the higher its quality). Thus, we must 

select the model that minimizes the amount of information lost, and the best model is the 

one with the smallest AIC. 

In order to assess the predictive capacity of the selected models, a completed ROC 

curve was built, and the values of the area below the ROC curve – AUC (Area Under 

Curve) were obtained. For this purpose, the values of (1 – specificity) were plotted on the 

abscissa axis and sensitivity in the ordinate axis, obtained from the matrix of 2 × 2 

confusion, generated by each model. 
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According to Hosmer et al., 2013, the general rule for evaluating the result of the area 

under the ROC Curve is presented below: 

 If 𝐴𝑈𝐶 = 0.5: there is no discrimination; 

 If 0.5 < 𝐴𝑈𝐶 < 0.7: poor discrimination; 

 If 0.7 ≤ 𝐴𝑈𝐶 < 0.8: reasonable discrimination; 

 If 𝐴𝑈𝐶 ≥ 0.8: excellent discrimination. 

The construction of the ROC curve was implemented through the ROCR package 

(SING et al., 2005) of the R software (R Core Team, 2020). 

 

3. Results and discussion 

The strategy derived from Collett's proposal (2003) was utilized to select the 

covariates included in the final model, whose results are shown in Table 1. 

 

Table 1 – Selection of covariables using logistic regression model and strategy derived 

from Collett's (2003) proposal, to predict rice blast resistance (Oryza sativa L.) 

Steps Model -2log L(β) 
Statistic of 

test    LRT 
P-value 

Step 1 Null 314.7266      -     - 

 V1 308.9986 5.7280 0.0167* 

 V2 313.0265 1.7001 0.1923 

 V3 313.7101 1.0166 0.3133 

 V4 300.4386 14.288 0.0002* 

 V5 314.2728 0.4539 0.5005 

 V6 314.6075 0.1191 0.7300 

 V7 310.6362 4.0904 0.0431* 

 V8 298.4124 16.3143 0.0001* 

 V9 310.4151 4.3116 0.0379* 

 V10 308.8089 5.9177 0.0150* 

 V11 307.0889 7.6377  0.0057* 

 V12 313.2573 1.4694 0.2254 

 V13 314.7111 0.0155 0.9009 

 V14 306.4341 8.2926 0.0040* 

  V15 306.3386 8.3880 0.0038* 

Step 2 V1+V4+V7+V8+V9+V10+V11+V14+V15 265.9581      -       - 

(Without V1) V4+V7+V8+V9+V10+V11+V14+V15   266.6430 0.6849 0.4079 
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(Without V4) V1+V7+V8+V9+V10+V11+V14+V15 268.6786 2.7205 0.0991* 

(Without V7) V1+V4+V8+V9+V10+V11+V14+V15 267.4885 1.5304 0.2161 

(Without V8) V1+V4+V7+V9+V10+V11+V14+V15 275.4432 9.4851 0.0021* 

(Without V9) V1+V4+V7+V8+V10+V11+V14+V15 267.5873 1.6292 0.2018 

(Without V10) V1+V4+V7+V8+V9+V11+V14+V15 272.9615 7.0033 0.0081* 

(Without V11) V1+V4+V7+V8+V9+V10+V14+V15 273.3302 7.3721 0.0066* 

(Without V14) V1+V4+V7+V8+V9+V10+V11+V15 271.8139 5.8558 0.0155* 

(Without V15) V1+V4+V7+V8+V9+V10+V11+V14 270.6782 4.7201 0.0298* 

Step 3 V4+V8+V10+V11+V14+V15 271.1824      -       - 

 V4+V8+V10+V11+V14+V15+V1 269.2947 1.8877 0.1695 

 V4+V8+V10+V11+V14+V15+V7 268.7549 2.4276 0.1192 

 V4+V8+V10+V11+V14+V15+V9 268.6713 2.5111 0.1131 

Step 4 V4+V8+V10+V11+V14+V15 271.1824      -      - 

 V4+V8+V10+V11+V14+V15+V2 271.1223 0.0601 0.8063 

 V4+V8+V10+V11+V14+V15+V3 265.1750 6.0074 0.0142* 

 V4+V8+V10+V11+V14+V15+V5 269.4139 1.7685 0.1836 

 V4+V8+V10+V11+V14+V15+V6 266.4102 4.7722 0.0289* 

 V4+V8+V10+V11+V14+V15+V12 265.8614 5.3210 0.0211* 

 V4+V8+V10+V11+V14+V15+V13 264.1504 7.0320 0.0080* 

Step 5 V4+V8+V10+V11+V14+V15+V3+V6+V12+V13 259.1169      -      - 

(Without V4) V8+V10+V11+V14+V15+V3+V6+V12+V13 262.6172 3.5004 0.0614* 

(Without V8) V4+V10+V11+V14+V15+V3+V6+V12+V13 267.7432 8.6265 0.0033* 

(Without V10) V4+V8+V11+V14+V15+V3+V6+V12+V13 259.3160 0.1992 0.6554 

(Without V11) V4+V8+V10+V14+V15+V3+V6+V12+V13 266.7422 7.6255 0.0058* 

(Without V14) V4+V8+V10+V11+V15+V3+V6+V12+V13 260.9080 1.7912 0.1808 

(Without V15) V4+V8+V10+V11+V14+V3+V6+V12+V13 265.0047 5.8879 0.0153* 

(Without V3) V4+V8+V10+V11+V14+V15+V6+V12+V13 261.1983 2.0815 0.1491 

(Without V6) V4+V8+V10+V11+V14+V15+V3+V12+V13 260.1793 1.0626 0.3026 

(Without V12) V4+V8+V10+V11+V14+V15+V3+V6+V13 259.2079 0.0911 0.7627 

(Without V13) V4+V8+V10+V11+V14+V15+V3+V6+V12 260.3089 1.1922 0.2749 

Step 6 V4+V8+V11+V15 281.2497      -      - 

 V4+V8+V11+V15+V4×V8 281.2217 0.0280 0.8671 

 V4+V8+V11+V15+V4×V11 278.7223 2.5274 0.1119 

 V4+V8+V11+V15+V4×V15 278.4753 2.7744 0.0958* 

 V4+V8+V11+V15+V8×V11 281.0476 0.2021 0.6531 



Braz. J. Biom., Lavras, v.40, n.2, p.166-180, 2022 - doi: 10.28951/bjb.v40i2.559 173 
 

 V4+V8+V11+V15+V8×V15 280.3919 0.8578 0.3544 

  V4+V8+V11+V15+V11×V15 274.2641 6.9856 0.0082* 

Stage  V4+V8+V11+V15+V4×V15+V11×V15 268.4995   

Final V4+V8+V11+V15+V4×V15 278.4753   

  V4+V8+V11+V15+V11×V15 274.2641     

*P-value < 0.10. 
    

First, in step 1, all models containing a single covariate. By testing the likelihood ratio, 

it was found that the covariables V1, V4, V7, V8, V9, V10, V11, V14 and V15 were 

significant at the level of 0.10, that is, it was demonstrated that they have some influence 

on rice blast resistance (response variable). 

In step 2, the previously significant covariates (step 1) were adjusted together. 

According to Colosimo and Giolo (2006), in the presence of certain covariables, others 

may cease to be significant. Thus, reduced models were adjusted, excluding a single 

covariate at a time. It was found that only the V4 covariates, V8, V10, V11, V14 and V15 

significantly increased the ratio statistic of likelihood. Thus, only those covariates 

continued in step 3. 

In step 3, with the covariates that were significant in step 2, a new model and the 

covariables that were excluded in step 2 returned to the model to confirm that they were 

not statistically significant. 

In step 4, since the covariates included in step 3 (V1, V7, V9), one at a time, showed 

no significance, the reference model from step 3 was maintained and returned with the 

covariables excluded in step 1, one at a time, to confirm that they were not statistically 

significant. 

Then, in step 5, a model included the covariables (V3, V6, V12, V13) significant in 

step 4, and it was tested whether any covariate could be removed from the model. It was 

observed that the covariables (V10, V14, V3, V6, V12, V13) presented no statistical 

significance and were removed from the model. 

Finally, in step 6, a model was adjusted with the covariables that were significant in 

step 5. Furthermore, to complete modelling, the possible inclusion of terms of double 

interaction between covariates already included in the model required previous analysis. 

It was observed that the interactions V4×V15 and V11×V15 were significant at the 

level of 0.10. Thus, in the final stage, three models were selected to estimate the 

probability occurrence of resistance to rice blast (Oryza sativa L.), as follows: Model 1: 

V4+V8+V11+V15+V4×V15+V11×V15; Model 2: V4+V8+V11+V15+V4×V15 and 

Model 3: V4+V8+V11+V15+V11×V15. 

Once the three models were selected, the Hosmer and Lemeshow test was applied to 

verify the quality of the fit, the Area Under the ROC Curve (AUC) was used to assess the 

predictive capacity of the models, and the AIC values were used for the comparison of the 

models (Table 2). 
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Table 2 – Hosmer and Lemeshow test and model performance measures: Model 1 (with 

two interactions between the covariables V4×V15 and V11×V15), Model 2 (with the 

interaction between V4×V15 covariates) and Model 3 (with the interaction between 

covariates V11×V15) 

  Chi-Quad. GL P-value AIC AUC 

Model 1 14.58 8 0.068 282.4995 0.7553 

Model 2 14.97 8 0.060 290.4753 0.7259 

Model 3 16.27 8 0.039* 286.2641 0.7391 

* Significant at 0.05 

AIC - Akaike information criteria; AUC - Area under the curve. 

 

Table 2 shows that there were no differences between the predicted and observed 

values for models 1 and 2, by the Hosmer and Lemeshow test, which indicates that these 

models were able to produce reliable ratings for resistance to rice blast. According to the 

area under the ROC curve, the three models presented good discrimination power (0.7 ≤
 𝐴𝑈𝐶 ≤  0.8), according to Hosmer Junior et al. (2013). However, model 1 was the best 

model; since it presented a lower AIC value and higher AUC value. In model 3, a 

significant difference was observed between the predicted and observed values by the 

Hosmer and Lemeshow test. This indicates that the model is not fitted to the data. 

Therefore, it was excluded from further analysis. 

Once the models capable of producing reliable classifications were known, the 

percentages of the predictive capabilities of the models were obtained, as shown in Table 

3. 

 

Table 3 – Measures of predictive capacity (%) of the models adjusted with four covariates 

(V4, V8, V11 and V15), with Model 1 (with two interactions: V4×V15 and V11×V15) 

and Model 2 (with only one interaction: V4×V15) 

  Sensitivity Specificity Accuracy 

Model 1 93.7 80.3 74.6 

Model 2 96.1 85.9 75.0 

Sensitivity and Specificity: percentage of correct classifications or predictions of resistant and 

susceptible plants to rice blast, respectively. Accuracy: total percentage correct classifications. 

 

Table 3 showed that the percentage of correct responses for sensitivity and specificity 

were higher in model 2 than in model 1. Regarding the percentage accuracy, both models 

presented almost equal values, around 75%. 

Therefore, the ROC Curve of the two models was built according to the sensitivity and 

1-Specificity (Figure 1). 
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Figure 1 – ROC curve of the models fitted with four covariates (V4, V8, V11 and V15), so that 

Model 1 (with two interactions: V4×V15 and V11×V15) and Model 2 (with only one interaction: 

V4×V15). 

 

Although the curves are close (Figure 1), there were different performance models (1 

and 2) at specific points of (1-Specificity) and sensitivity, which can be close between the 

points (0.25; 0.50) and (0.50; 0.875). According to Bozdogan (1987), if two or more 

models are well adjusted and have an adequate predictive capacity, one should prefer the 

model that involves the smaller number of parameters to be estimated, which explains 

well the behaviour of the response variable. Thus, for the prediction of rice blast 

resistance, it was selected model 2, for being the most parsimonious model. 

Thus, estimates of model 2 parameters were obtained, in order to identify the 

significant effects. Table 4 shows the parameter estimates, their standard errors and the 

odds ratio values. 
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Table 4 – Estimates of the parameters of model 2 of logistic regression selected from 16 

variables to predict resistance to rice blast (Oryza sativa L.), containing four covariables: 

width of the flag leaf (V4), average number of the branching of the primary panicle (V8), 

width of the seed with shell (V11), quantity of amylose presents in the ground grains 

(V15) and the (V4×V15) interaction 

OR - Odds ratio; 95% CI - 95% confidence interval for OR. 

 

Table 4 demonstrates that, at 5% significance level, the variables included in the 

model, V4 and V8. The variable V15 presented significance (𝑝 =  0.054) and was also 

included in the model, which indicates that these variables influence the disease. 

However, the variable V11 and the V4×V15 interaction presented no statistical 

significance (𝑝 > 0.05), which indicates that these can be removed from the model. 

According to the results obtained in Table 4, a new model was adjusted, including only 

the three covariates (V4, V8 and V15). Once the model was adjusted, the quality of the fit 

was tested, by the Hosmer and Lemeshow test, and no significant differences (𝑝 > 0.05) 

were found between the predicted and the observed frequencies in the model. It indicates 

that the model was able to produce reliable ratings. The values of parameter estimates, 

their standard error, and the values of the model´s odds ratios, are presented in Table 5. 

 

Table 5 – Estimates of the parameters of logistic regression model selected for the 

prediction of resistance to rice blast (Oryza sativa L.) with three variables: flag leaf width 

(V4), mean number of primary panicle branch (V8) and amount of amylose present in the 

ground grains (V15) 

OR - Odds ratio; 95% CI - 95% confidence interval for OR. 

Variables Coefficient 
Standard 

error 
Z P-value OR 95% CI 

Intercept -10.796 4.426 -2.439 0.015 - - 

V4 6.403 3.001 2.127 0.033 603.916 (4.274 - 85334.878) 

V8 0.257 0.094 2.743 0.006 1.293 (1.108 - 1.509) 

V11 -0.725 0.438 -1.658 0.097 0.484 (0.236 - 0.994) 

V15 0.358 0.186 1.925 0.054 1.430 (1.053 - 1.941) 

V4 × V15 -0.233 0.140 -1.663 0.096 0.792 (0.629 - 0.997) 

Variables Coefficient 
Standard 

error 
Z P-value OR 95% CI 

Intercept -7.370 1.289 -5.717 0.000 - - 

V4 1.333 0.653 2.042 0.041 3.793 (1.296 – 11.097) 

V8 0.277 0.092 3.000 0.003 1.319 (1.133 - 1.535) 

V15 0.090 0.033 2.760 0.006 1.094 (1.037 - 1.155) 
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It was observed that the covariates width of the flag leaf (V4), average number of the 

branching of the primary panicle (V8) and amount of amylose present in the ground 

grains (V15) presented statistical significance at the level of 5%, which indicates that 

these variables influence blast resistance. According to estimates for odds ratio (OR), a 

one cm increase in V4 causes 279.3% of the expected increase in the probability of blast 

resistance. For the addition of a V8, a 31.9% increase in the probability of resistance is 

expected, on average, while for each percentage unit of increase in V15, a 9.4% increase 

is expected in the probability of blast resistance. 

The permanence of the covariates width of the flag leaf (V4) and average number of 

the branching of the primary panicle (V8), in the final logistic model, can be explained by 

the fact that blast attacks mainly the leaves and panicles, causing losses in the grain yield 

and quality. Blast in the leaves causes indirect damage to grain production, by reducing 

the rate of photosynthesis and respiration, while blast in panicles directly affects grain 

formation and weight (SILVA-LOBO et al., 2012). 

In their study on the associations between agronomic variables of rice genotypes, 

Castro et al. (2019) found high negative correlations between blast severity and rice grain 

yield (r = -0.96), which reveals that the more significant the incidence of the blast, the 

lower the productivity and growth of the plant. 

The importance of the variable width of the flag leaf in rice productivity, and 

consequently, in resistance to diseases such as blast, was verified by Aditya and Bhartiya 

(2013). Dalchiavon et al. (2012) reported a significant correlation between the number of 

panicles and the yield of rice grains. 

Amylose content is considered the most important characteristic related to the quality 

of rice grains. Amylose is one of the two factions that make up starch (the other is 

amylopectin). It generally varies between 3% and 33% in rice, and the varieties with 

intermediate amylose content (20% to 25%) are the most preferred by consumers all over 

the world, due to their dry, loose and soft grains (JAMALODDIN et al., 2020). According 

to Ong and Blanshard (1995), grains with higher amylose content have a firmer texture 

after cooking. 

Unlike the findings of Zhang et al. (2006), who detected no significant association 

between amylose content and blast resistance, this study demonstrated, through the 

logistic regression model, that the amylose content favors plant resistance to blast, which 

proves the effect of the disease on the quality of rice grains. 
 

4. Conclusions 

Out of the fifteen variables initially used to assess the disease, only three: flag leaf 

width (V4), the mean number of primary panicle branches (V8), and amount of amylose 

present in the ground grains (V15), proved to be important in the final adjusted model. 

The influence of these covariates showed that the more significant the increase in the 

value of these covariates, the greater the resistance to blast disease and, consequently, the 

greater the productivity of rice cultivars. It was found that the variable (V4) has the most 

significant effect on blast resistance, with a 279.3% probability of resistance to blast for 

each unit of cm increase of the flag leaf width.  
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OSSIFO, M. E., DUARTE, M. L., CARNEIRO, A. P. S., SANTOS, V. S., MARTINS FILHO, S. 

Seleção de variáveis em modelo de regressão logística para predição da resistência à brusone do 

arroz. Braz. J. Biom. Lavras, v.40, n.2, p.166-180, 2022. 

 RESUMO: O arroz (Oryza sativa L.) tem sido um dos alimentos mais consumidos no planeta, 

com importância econômica e social. Doenças, principalmente a brusone, causadas pelo fungo 

Pyricularia oryzae, são fatores limitantes para a produção de arroz. O presente trabalho teve 

como objetivo selecionar covariáveis que possam influenciar a resistência do arroz à brusone, 

utilizando o método de seleção proposto por Collett. Modelos de regressão logística foram 

ajustados para prever a resistência à doença, usando a curva ROC para avaliar a capacidade 

preditiva. Os dados utilizados foram obtidos de uma população de 413 plantas, com informações 

fenotípicas coletadas em 82 países e classificadas em cinco subpopulações. A pesquisa 

constatou que, das mais de quinze variáveis incorporadas para avaliar a doença, apenas três se 

mostraram relevantes para o modelo final ajustado, sendo: largura da folha bandeira (V4), o 

número médio de ramos primários da panícula (V8) e a quantidade de amilose de grãos moídos 

(V15). A variável V4 apresentou uma maior influência significativa na resistência à doença. 

Sendo que, para cada aumento unitário em V4, V8 e V15, espera-se obter aumentos de 279,3, 

31,9 e 9,4%, respectivamente, na probabilidade de resistência à brusone. 

 PALAVRAS-CHAVE: Curva ROC; Método de Collet; Oryza sativa; Pyricularia oryzae. 
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