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 ABSTRACT: This study was conducted to evaluate the spatial distribution of Aedes aegypti and 

to compare estimation methods of indicator kriging and conditional simulation. It was collected 

data from both dry and rainy periods through home visits and inspection of water contained in 

deposits in two areas (Train and New City) of the city of Macapá, Brazil. Among the main 

findings, it could be highlighted that the highest incidence of larvae was observed in the rainy 

season. It was also observed that, in both neighborhoods, the exponential model presented the 

best fit to the data. This model was used in the indicative kriging estimation method. It was 

applied descriptive measures such as mean, standard deviation and coefficient of variation for 

comparing observed and estimated values obtained by kriging and conditional simulation. The 

results showed that the conditional simulation was the best method for estimating the spatial 

distribution of Aedes aegypti in the two study areas. 
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1 Introduction 

Epidemic is the spread of an infectious disease which quickly arises in a particular 

location or in large regions and that attacks, at the same time, a large number of persons. 

Several ancient populations were destroyed by large-scale deaths from epidemics of 

leprosy, plague and cholera. Flu and dengue are quite frequent epidemics in Brazil today.  

Dengue has become a major health problem in Brazil. 2016 began with an increase 

in the number of dengue cases compared to 2015. The studies show that in the first weeks 

of this year there was an increase of approximately 49% over the same period 2015. 

Lefevre et al. (2007) stated that between vectored diseases, dengue deserves greater 

attention since, even in the classic form, creates inconvenience to the population, in 

addition to spending resources in the control trial, this should be easier to control flu, but 
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that's not what we see, on the contrary, it is seen larvae of dengue-causing mosquitoes to 

multiply more and more a result of rapid urbanization, pollution, environmental 

degradation, infrastructure deficiencies, sanitation and preventive education. Oliveira et 

al. (2003) also showed that the concentration of the species A. aegypti is mainly in urban 

areas with high concentrations of humans. Brassolatti and Andrade (2002) reported that, 

worldwide, the key step in combating the dengue program and the most difficult to 

succeed is about the community participation in the elimination phase and not allowing 

the vector breeding in breeding home. 

Dengue is defined by Bridges and Netto (1994) as an arbovirus, whose etiologic 

agent is represented by a complex of four serotypes of the virus family Flaviviridae, genus 

flavivirus, composed of about 70 species, of which about 30 are pathogenic, all cause the 

same clinical syndrome. This can be transmitted mainly by two mosquito species: A. 

aegypti and A. albopictus (HONÓRIO et al., 2009). 

There are reports in Brazil, epidemics since 1916, however the first epidemic 

documented clinical and laboratory findings was in 1982, in Boa Vista (Roraima), caused 

by the circulation of serotypes 1 (DEN-1) and 4 (DEN-4) considered the most dangerous 

(OSANAI et al 1983). The DEN-4 type was reintroduced in Brazil in 2010 in the 

municipalities of Boa Vista and Canta, located in the state of Roraima (TEMPORÃO et 

al., 2011). Specifically in the city of Macapá, the first cases of dengue recorded after 

laboratory confirmation, were cases imported mostly from the state of Pará. Frame this 

established until March 2001 when the first indigenous case of dengue surge in the 

municipality and consequently in the state. 

The study and control of this epidemic proves extremely important. Therefore, tools 

that can provide quick and efficient responses are very important for decision-making of 

governments, health departments, etc. In this context, statistical methods arise as allies in 

the identification, measurement and provide subsidies for vector combat in certain urban 

and rural areas. Conventional statistical methods describe the distribution of a particular 

population as aggregate, uniform or random, thus ignoring the spatial distribution of 

sampling stations (FARIAS et al., 2001). Geostatistical methods have been utilized to 

characterize the spatial distribution of insects by entomologists who study population 

dynamics (ELLSBURY et al., 1998; DARNELL et al., 1999; BARRIGOSSI et al., 2001). 

2 Materials and methods 

The area under study refers to two neighborhoods of Macapá. These neighborhoods 

are: Train and New City. Macapá is the most populous city of the Amapá state, being the 

only Brazilian capital bathed by the waters of the Amazon. It is cut by the Equator and its 

altitude is approximately 16 m above sea level, covering an area of 27795 km2. The 

number of inhabitants has a non-homogeneous occupation of physical space in which it 

identifies disability in infrastructure, such as substandard housing, population density, 

sanitation limitations, especially regarding the distribution of piped water and sewage 

collection networks, inadequate information systems and public education 

The collection of larvae was carried out through "home visit" considering the 

inspection technique recommended by the Technical Operational Policy Manual of the 

National Program of Dengue Control (BRAZIL, 2001). The inspection was initiated from 

outside (patio, yard or garden), always following the right. The inspection of the property 
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continues with an internal visit and must be initiated from the funds, so going from room 

to room until all deposits containing water were carefully examined. 

The collection is based on the verification of the presence or absence of larvae in 186 

sampled and georeferenced points, as can be seen in the base map of ‘New City’ and 

‘Train’ (Figures 1 and 2). To obtain the samples, selected at the most four housing block 

by block to include one residence on each side thereof (the wastelands and wetlands were 

excluded due to difficult access). 

 

Figura 1 - Spatial sampling map of the properties of the neighborhood New City, showing the 186 
properties sampled. 

 

Figura 2- Spatial sampling map of the properties of the neighborhood Train, showing the 186 
properties sampled. 
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2.1 Geostatistical Analysis 

The spatial dependence between neighboring samples can be measured with the 

semivariogram. The semivariogram can be estimated by 

         h<x,xd,xZxZ
n

=hγ ji

n

i

ji 
1

2

2

1
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where n is the total number of pairs of mosquitoes counts that are separated by a distance 

h. The graph of versus the corresponding values of h, called a semivariogram, is a 

function of the distance h, and, therefore, depends on distance magnitude and direction 

(FARIAS et al., 2008). 

The equation (1) expresses the spatial dependence among samples and to allow 

estimation of values for unsampled locations. For properties that are spatially dependent, 

the increment is expected to increase with distance, up to some distance beyond which it 

stabilizes at a sill value (symbolized as C1) and is numerically almost equal to the 

variance of the data. This distance is called the range (a) and represents the radius of a 

circle within which the observations are correlated. The semivariance value at the 

intercept to the axis is called nugget effect (C0), and represents the variability at distances 

smaller than the minimum sampling distance. Dominy et al. (2002) comment that the 

randomness introduced makes predictions of unsampled locations difficult. As a result, 

understanding and reducing the nugget effect has significant importance because a high 

nugget effect can be related to poor sampling practice. 

A comparison of semivariogram parameters, for different situations, can provide 

important information on the corresponding spatial distribution.  

Many times, one may be interested in going beyond modeling the spatial structure, 

such as when values for unsampled locations must be estimated to build a detailed, precise 

map of the variable under study. In this case, it is necessary to interpolate between the 

sampled points. If an estimation, is to be made for any location, as linear combination of 

the neighboring measured values (x0), then as 

  ,)z(xλ=xz
N

i

ii
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where N is the number of measured values involved in the estimation, and  are the weights 

associated with each measured value. If the spatial correlation expressed through the 

semivariogram is used to define the weights, then the estimation process is called ordinary 

kriging. This estimation is unbiased and has minimum variance (DEUTSCH and 

JOURNEL 1992). 

2.2 Conditional simulation 

The stochastic simulation generates several independent sequences of the studied 

phenomenon, wherein each draw generates a new different series but with the same 
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statistical properties and equally probable, characterized by the ability to reproduce the 

variation of the input data in the case of geostatistics, from the variogram. This objective 

differs from that estimation is to minimize the variance of the estimation error. For this 

reason, the estimation tends to produce spatial variation patterns more smoothed than 

actual.  
This condition is especially characteristic of kriging. In general, the goals of the 

simulation and the estimation are incompatible. The estimated values  xZ *  tend to fit 

itself by means of the actual values of  xZ , even if the simulated values  xZS
 best 

reproduce the aspect of fluctuation of the real phenomenon (CALVETE and RAMIREZ 

1990). 

        ,xZxZ+xZ=xZ SSSC

**   (3) 

where  xZ *  is the estimated value in x obtained by kriging,  xZS   is the simulated 

value (without conditional processing) and  xZS

*  is the kriging estimated value taking 

into account the simulated values in the sampling points. The expression above can be 

written as 

    (x),e+xZ=xZ SCSC

*
 (4) 

where  xeSC  represents the kriging inaccuracy of the simulated values SZ  without 

conditional processing. Taking into account the original data  xZ *
, the kriging values 

are obtained by 

     .* xe+xZ=xZ k  (5) 

 Because kriging value is estimated, it can be assumed that 

      0 xeExeE kSC
. The  xZSC

 covariance has the same value of  xZ  

covariance because kriging inaccuracies       xZxZxe *  and 

      xZxZxe SSC

*

*  have the same covariance, and,  xe  and  xZ *
 are 

orthogonal. 
In kriging it is assumed that 

       ,xZ=x ZxZ=xZ iiiSiS

** and  (6) 

with    iiSC xZxZ   for all i. Therefore, a simulation process that keeps the 

covariance structure of Z and coincides with the observations is chosen and, 

consequently,  iSC xZ  is accepted as the conditionally simulated process of Z. 

To evaluate the methods of estimation of this study is used to display geostatistical 

maps and from the images are measurements obtained as the mean  X  the deviation (S) 
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and the coefficient of variation (CV) of observed values (OV) and the estimated (VE) by 

indicative kriging (KRIG) and conditional simulation (SC) to assess and verify which 

method is most suitable for the study 

3 Results 

Initially, it was observed in the inspected buildings in the city of Macapá that the 

highest incidence numbers of larvae were recorded for the rainy season, and the New City 

neighborhood with the highest amount of collected larvae.  

Table 1 - Number and percent of inspected homes in the city of Macapá to the vector 

larvae incidence verification of Aedes aegypti, in the neighborhoods of Train 

and New City for both the dry (Oct / 05) and rainy (Feb / 06) seasons 

Neighborhood Variables 
Dry period Rainy period 

       

Quantity 
       

Percentage 
      

Quantity 
        

Percentage 

Train 
Absence 164 88,17 148 79,57 
Presence 22 11,83 38 20,43 
Total 186 100,00 186 100,00 

New City 
Absence 181 83,03 156 71,56 
Presence 37 16,97 62 28,44 
Total 218 100,00 218 100,00 

 

First of all, it was necessary to measure the degree of spatial dependence among 

samples, which can be assessed by semivariogram for examination and interpretation of 

spatial variability. The Table 2 shows the parameters of the adjusted models in 

semivariograms, theoretical models, the coefficient of determination (R
2
), the index 

relative nugget effect (E) and k parameter in which it is observed that for the variables 

studied, the semivariogram parameters were adjusted considering the degree of fit of the 

models, verified by R
2
. 

Table 2- Parameters of semivariograms models, R
2
, relative nugget effect (E) and K 

parameter to the larvae incidence vector Aedes aegypti in neighborhoods of 

Train and New City for the two seasons of collection 

Neighborhood Variables Parameters 
Model R

2
 E K 

C0 C1 a(m) 

Train 
Dry period (Out/05) 0.03 0.09 150 Exponential 0.99 0.33 0.25 

Rainy period (Fev/06) 0.05 0.12 120 Exponential 0.98 0.42 0.30 

New City 
Dry period (Out/05) 0.06 0.11 120 Exponential 0.99 0.55 0.35 

Rainy period (Fev/06) 0.12 0.10 160 Exponential 0.98 1.20 0.55 
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The semivariogram and the parameters of the fitted model to the incidence vector 

Aedes aegypti larvae to dry and rainy periods in Train district are shown in Figure 3 A and 

B, which show that the exponential model fit the incidence of data larvae to both the dry 

and rainy seasons, with a spatial dependence (range) of 150m and 120m, respectively. For 

the dry season the relative nugget effect (E) is approximately 0.33 and the ratio (k) is 

equal to 0.25. In the rainy season the Train district has E = 0.42 and k = 0.30, thus 

indicating the existence of significant randomness in both the samples for the two seasons. 

 

 

Figure 3 - Semivariograms larvae vector incidence of Aedes aegypti in the neighborhood of Train: 

(A) dry season (Oct / 2005) and (B) rainy season (Feb / 2006). 

You can see in Figure 4 A and B maps for vector A. aegypti larvae variable 

estimated by kriging and the average of 100 conditional simulations to the Train 

neighborhood for both the dry and rainy seasons. 

 

 
Figure 4- Maps of variable larvae vector Aedes aegypti estimated by kriging indicative (A) and 

average of 100 conditional simulations (B) in the neighborhood Train for dry and rainy 

periods. 



Rev. Bras. Biom., Lavras, v.35, n.2, p.402-414, 2017 409 
 

Visual inspection of Figure 4 shows that it is possible to see that both have similar 

results. But, the difference between these figures is on the surface of the region, while 

Figure 4A produces the most smoothed spatial variation to the actual values in Figure 4B 

best represents the data variability (Figure 3), being necessary to analyze the parameters 

in Table 3. 

Table 3 presents S and the CV of observed and estimated values by indicative 

kriging and conditional simulation used in vector spatial distribution A. aegypti in the 

district Train to the dry and rainy seasons. 

Table 3- Average, S and CV values of observed (OV) and estimated values by indicative 

kriging and conditional simulation used in spatial distribution of the vector 

Aedes aegypti for the Train district for both the dry and rainy seasons. 

  Dry period   Rainy period  

  OV KRIG SC   OV KRIG SC  

Average 0.1300 0.1401 0.1562  0.1200 0.1186 0.1335  

 S 0.3371 0.1514 0.3585  0.3258 0.1281 0.3389  

CV  25.931 10.807 22.951  2.7150 10.801 25.386  

Note: CV = S/Average. that S: Deviation; and CV: Coeficient of Variation. 

It is observed in Table 3 that when comparing the average of the values estimated by 

kriging and conditional simulation with the average of the observed values, the 

neighborhood Train, both in the dry season and in the rainy season, both presented 

averages of approximately equal estimators of the observed values. So, making an 

analysis from the deviation of the observed values, where the deviation of the estimation 

should be as close as possible deviation of the observed values. In doing so, it is observed 

that the deviation of the conditional simulation for the rainy and dry seasons was more 

close to the observed values. Then calculate the CV of the observed values and estimated, 

it noted that both the dry and rainy seasons, the estimation method for simulation was the 

most appropriate for this study because it presents the CV near the CV values observed. 

It is observed in Figure 5 A and B that the exponential model fit both the incidence 

data larvae for both the dry and rainy season, with a spatial dependence (range) of 120m 

and 160m respectively. It is noted also that the dry period on the nugget effect (E) is of the 

order of 0.55, which indicates that the random component is very important, and the 

parameter k was 0.35, indicating that about 35% of the variance of the samples is random. 

For the rainy season and was around 1.20 and k equal to 0.55. Thus, they are close to the 

sampling units were this variability is present. 
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Figure 5- Semivariograms larvae vector incidence of Aedes aegypti in the neighborhood of New 
City: (A) dry season (Oct / 2005) and (B) rainy season (Feb / 2006). 

Figure 6 (A and B) shows the map of the variable vector A. aegypti larvae estimated 

by kriging and the average of 100 conditional simulations in the New City neighborhood 

to the dry and rainy seasons. For visual comparison of the maps obtained, it can be seen 

that these images show only changes with regard to the variability of the data.  
It is observed from Table 4, which shows the values of S and the CV of observed 

and estimated values of indicative kriging and conditional simulation used in vector 

spatial distribution A. aegypti in the New City neighborhood, for dry periods and rainy 

that the kriging estimation and conditional simulation are approximately equal. thus 

indicating that it is not only necessary to evaluate these estimators. Note that for the New 

City neighborhood, during the two periods studied. The estimation by simulation presents 

the best S in relation to indicative kriging estimation. From the CV of observed and 

estimated values, it turns out that the conditional simulation was the most appropriate 

method for the study in the New City neighborhood to the dry and rainy seasons. 
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Figure 6 - Maps of variable larvae vector Aedes aegypti estimated by kriging indicative (A) and 

average of 100 conditional simulations (B) in the neighborhood New City for the dry 

and rainy periods  

Table 4- Average. S and CV values of observed (OV) and estimated by kriging indicative 

and conditional simulation used in spatial distribution of the vector Aedes 

aegypti in the New City district, for the dry and rainy seasons 

  Dry period   Rainy period 

  OV KRIG SC  OV KRIG SC 

Average 0.1697 0.1395 0.1354  0.2844 0.2588 0.2632  

 S 0.3763 0.0985 0.3398  0.4522 0.1169 0.4385  

 CV 2.2174 0.7061 2.5096  1.5900 0.4517 1.6728  

Note: CV = S/Average. that S: Deviation; and CV: Coeficient of Variation 
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Conclusions 

Geostatistics and conditional simulation were used in this study to select best method 

would fit the vector distribution A. aegypti. From the analysis of the coefficients of 

variation for the neighborhoods Train and New City, located in the city of Macapá, you 

can see that on both locations the conditional simulation shows better performance to 

estimate the variable vector A. aegypti larvae. The importance of this study lies in the fact 

of being able to assess and identify possible areas with the highest incidence of dengue 

vector, facilitating decision making for disease control for more effective and precise 

methods. 
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RESUMO: Este estudo foi conduzido para avaliar a distribuição espacial do Aedes aegypti e 

comparar os métodos de estimativa krigagem indicadora e simulação condicional. Assim, recolheu-

se informação nos períodos seco e chuvoso, através de visitas domiciliares e inspeção de água 

contida em depósitos nas áreas de estudo (Bairros Trem e Cidade Nova) pertencentes à cidade de 

Macapá, Brasil. Dentre as principais descobertas destaca-se que a maior incidência de larvas foi 

registrada na estação chuvosa. Pode-se observar que o modelo exponencial foi o que melhor se 

ajustou aos dados para os dois bairros, permitindo a estimativa por krigagem indicativa. Para 

avaliar os métodos de estimação utilizaram-se medidas descritivas como: média, desvio padrão e 

coeficiente de variação para os valores observados e valores estimados, tanto pela krigagem 

quanto pela simulação condicional. A partir da análise das medidas obtidas, parece que a 

simulação condicional foi o método mais adequado ao estudo nos bairros e que apresentou os 

melhores resultados de estimação. 

PALAVRAS-CHAVE: Dengue; epidemiologia, geostatística; interpolação, dependência espacial. 
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