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ABSTRACT: Survival models with frailty are used when some variables are non-

available to explain the occurrence time of an event of interest. This non-availability

may be considered as a random effect related to unobserved covariates, or that cannot

be measured, such as environmental or genetic factors. This paper focuses on the

Gamma-Gompertz (denoted by G-G) model that is one of a class of models that

investigate the effects of unobservable heterogeneity. We assume that the baseline

mortality rate in the G-G model is the Gompertz model, in which mortality increases

exponentially with age and the frailty is a fixed property of the individual, and the

distribution of frailty is a gamma distribution. The proposed methodology uses the

Laplace transform to find the unconditional survival function in the individual frailty.

Estimation is based on maximum likelihood methods and this distribution is compared

with its particular case. A simulation study examines the bias, the mean squared errors

and the coverage probabilities considering various samples sizes and censored data. A

real example with lung cancer data illustrates the applicability of the methodology,

where we compared the G-G and without frailty models via criteria which select the

best fitted model to the data.
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1 Introduction

Vaupel et al. (1979) introduced the term frailty to indicate that different
individuals are at risks even though on the surface they may appear to be quite
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similar with respect to measurable attributes such as age, gender, weight, etc. They
used the term frailty to represent an unobservable random effect shared by subjects
with similar (unmeasured) risks in the analysis of mortality rates. A random effect
describes excess risk or frailty for distinct categories, such as individuals or families,
over and above any measured covariates. Thus random effects, or frailty models,
have been introduced into the statistical literature in an attempt to account for the
existence of unmeasured attributes such as genotype that do introduce heterogeneity
into a study population. A common approach to the analysis of survival data is to
assume a homogeneous population of individuals with the same covariate structure.
However, it is clear that individuals identical in many respects such as age, sex and
treatment may differ in unmeasured ways, only because of genotypical differences.
It is easy to see that it is important to consider the effect of ignoring frailty in any
study where the existence of such heterogeneity may be present.

More formally, a heterogeneous population can be sometimes modeled as a
mixture problem with an underlying random variable called frailty. This random
effect or frailty is introduced in the baseline hazard rate (HR) additively or
multiplicatively. Several authors have studied the use of multiplicative frailty
models, which represent a generalization of the Cox model (COX, 1972). Andersen
(1993) and Houggard (1995) presented a review of the multiplicative frailty models
in the classical perspective, whereas Sinha and Dey (1997) presented a review
of these models under the Bayesian point of view. Some authors have studied
models with univariate frailty. For example, Aalen and Tretli (1999) applied the
compound-Poisson distribution to data from testicular cancer, Henderson and Oman
(1999) studied the consequence of ignoring the frailty in the fitting, Tomazella et al.
(2008) presented an approach involving objective Bayesian reference analysis to the
frailty model with survival time univariate, Hanagal and Sharma (2012) considered
the shared gamma frailty model with Gompertz distribution as baseline hazard for
bivariate survival times, Sharma and Hanagal (2014) proposed frailty regression
models in Gompertz mixture distributions and assume the distribution of frailty as
gamma or inverse Gaussian or positive stable or power variance function distribution
and, Milani et al. (2015) proposed a frailty model with non-proportional hazard.

Suppose that T is the occurence time of a event of the subject (for example,
the time to infection for a kidney patient using portable dialysis) and the x is a
covariate; then, the probability density of T might be modeled conditional on v,
an unobserved non-measurable random variable, called frailty, which is intended to
allow for individual variation. This representation can be symbolized by f(t;x, v).
Under this representation, the occurence-time distribution can be considered to be
continuous mixture induced by the frailty v.

The frailty term of the model is random and a distribution must be assumed
for it. Due to the way as the frailty term acts on the HR, natural candidates to
the frailty distribution must be supposed as continuous and time independent, such
as gamma, inverse Gaussian, log-normal and Weibull distributions (HOUGGARD,
1995). In this paper, we focus on gamma distribution and use the G-G frailty
model. The frailty in the frailty model is assumed to follow a gamma distribution
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and baseline HR is the Gompertz model.

The Gompertz distribution is widely used to fit data from clinical trials and
construct life tables in actuarial area. Various authors have studied the parameters
estimation of this model. Among others, Garg et al. (1970) obtained the maximum
likelihood estimators and properties for the parameters and Lenart (2012) presented
a revision about Gompertz distribution. The G-G model is one of a class of models
that investigate the effect of unobserved heterogeneity that is either unobservable
or unobserved on mortality rates.

Our goal is analyze a dataset that represents a patient’s lifetime with lung
cancer when we adopt the G-G regression model in a possible cure rate scenario.
In this methodology, we use the Laplace transform of the frailty density to obtain
the population (or unconditional) survival function. The use of this transformation
makes it easier to obtain survival function.

This paper is organized as follows. In Section 2 we present review of frailty
model, in Section 3 we present Gompertz regression model and in Section 4 we
present Gompertz regression model with gamma frailty and the estimation about
the parameters of this model. In section 5 we present a simulation study of the
proposed model considering right-censored and no censored data to some samples
sizes and in Section 6 we present an application on a real lung cancer dataset.
Finally, in Section 7 we make some concluding remarks.

2 Background

2.1 Frailty models

Consider an unobserved source of heterogeneity, which is not readily captured
by a covariate on a univariate frailty model. It extends the Cox model, such that
the hazard function (HF) of a patient depends on an unobservable value of the
random variable V , which acts multiplicatively on the baseline HF. Therefore, the
conditional HR of V random variable to pacient i available at time t, given V = vi,
is given by

hT |V=vi(t) = vih0(t), i = 1, . . . , n, t > 0, (1)

where vi is the frailty of the patient i and h0(t) is a baseline HF. Note that (1) is
known as the Clayton model (CLAYTON, 1991). From (1), note that the HR of the
patient i decreases if vi < 1 and increases if vi > 1. The corresponding conditional
survival function (SF) can be obtained from (1) as

ST |V=vi(t) = exp(−viH0(t)), i = 1, . . . , n, t > 0, (2)

where H0(t) =
∫ t
0
h0(s)ds is the baseline cumulative hazard function.

Let (t, δ) be the observed data for a sample of size n, where ti is the occurrence-
time of the event of interest and δi is the indicator of censoring, that is, δi = 1 if
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the observation is the time to the event of interest and δi = 0 if it is right censored,
for i = 1, . . . , n. Then, from (1) and (2), the corresponding likelihood function is

L(µ; t,v, δ) =

n∏
i=1

(vih0(ti))
δi exp (−viH0(ti)) , (3)

where µ is the vector of parameters, t = (t1, . . . , tn), v = (v1, . . . , vn) and δ =
(δ1, . . . , δn). Now, conditional on the unobserved frailties v, the likelihood function
given in (3) forms the basis for the parameters estimation. The frailties must be
integrated out (in closed form or by numerical or stochastic integration, depending
on the frailty distribution) to get a likelihood function not depending on unobserved
quantities of the type

L(µ; t, δ) =

n∏
i=1

(hT (ti))
δi ST (ti). (4)

2.2 Unconditional hazard and survival functions

The unconditional (population) SF of T can be obtained by integrating
ST |V=vi(t) given in (2) on the frailty v. This function may be viewed as
the SF of patients randomly drawn from the population under study (see
KLEIN and MOESCHBERGER, 2003; AALEN et al., 2008 and WIENKE,
2011). Unconditional HF and SF can be obtained with the Laplace transform
(HOUGAARD, 1984). Then, when seeking distributions for the frailty variable V ,
it is natural to use frailty distributions with an explicit Laplace transform, because
it facilitates the use of traditional maximum likelihood method for parameter
estimation. To obtain the unconditional SF, we need to integrate out the frailty
component as

ST (t) =

∫ ∞
0

ST |V (t)fV (v)dv, (5)

where fV (v) is the probability density function (PDF) of the V and ST |V (t) is the
conditional SF given in (2).

In general, the Laplace transform of real argument s of a function f(x) is given
by

Q(s) =

∫ ∞
0

exp(−sx)f(x)dx. (6)

Let f(·) = fv(·) be the frailty PDF and s = H0(t). Then, according to (6), we
obtained the Laplace transform of the unconditional SF as

ST (t) =

∫ ∞
0

exp(−vH0(t))fV (v)dv = Q(H0(t)). (7)

Note that (7) conducts to the same form as the unconditional SF given in (5)
(see VAUPEL et al., 1979 and WIENKE, 2011). The frailties random variables vi
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are usually assumed to be independent and identically distributed. As mentioned,
the frailty distribution can be gamma, inverse Gaussian or Weibull, which have
simple Laplace transforms and then are convenient to use. In this paper we
considered a reparametrized version of the gamma distribution traditionally used
in frailty models.

3 Gompertz regression model

The HF of the Gompertz model, in which mortality increases exponentially
with age t, is given by

h(t|b, α) = beαt, (8)

where b denotes the level of the force of mortality at age t = 0 and α the rate of
aging.

We considered a continuous random variable T with a Gompertz PDF with
location parameter b and shape parameter α,

f(t|b, α) = b exp

(
αt− b

α

(
eαt − 1

))
, t > 0, α > 0 e b > 0.

The truncated distribution yields a proper density function by rescaling the α
parameter to correspond to t = 0 (GARG et al., 1970 and LENART, 2012). The
distribution function is

F (t|b, α) = 1− exp

(
− b
α

(
eαt − 1

))
.

Considering b = exp(x′β) in (8) we have the Gompertz regression model or
time-dependent proportional hazard model. This model is defined by the HF given
by

h(t|α,β) = exp(αt+ x′β), (9)

where α is a measure of the time effect, β′=(β0, β1, . . . , βk) is a vector of k + 1
unknown parameters measuring the influence of the k covariates x′ = (1,x1, . . . ,xk)
and, t represents the univariate survival time of a unit or individual.

The behavior of the HF (9) takes several forms, according to the value of
α: for α > 0, the hazard function is increasing; for α < 0, the hazard function is
decreasing and for α = 0, the hazard function is constant. The Figure 1 (left) shows
some examples of possible shapes of the hazard function.

When the survival times of the n individuals are observed, the ratio of the
hazard function of two individuals, i and j, with i 6= j and i, j = 1, . . . , n, with
different covariates vector is given by

hi(t|xi)
hj(t|xj)

=
exp(αt+ x′iβ)

exp(αt+ x′jβ)
= exp[(xi − xj)′β]. (10)
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Note that the time effect disappears in equation (10) and hence the proportionality
becomes evident.

From equation (9) the SF is given by

S (t|α,β) = exp

{
ex

′β

α

[
1− eαt

]}
. (11)

Observe that the function in (11) also has its behavior determined by the value of
α. For α > 0, S(0|α,β) = 1 and S(∞|α,β) = lim

t−→∞
S(t|α,β) = 0, in other words,

the survival function is proper. For α < 0, S(0|α,β) = 1 and S(∞|α,β) 6= 0, the
survival function is improper, that is, when α < 0 we have a model for cure rate or
long duration, with the cure rate, p, given by

p = exp

{
ex

′β

α

}
.

Some examples of hazard functions (left) and survival functions are shown in
Figure 1 (right).
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Figure 1 - Different forms of the hazard function (left) and survival function (right)
to the Gompertz regression model.

Using the equations (9) and (11), the PDF of T is given by

f (t|α,β) = exp

{
αt+ x′β +

ex
′β

α

(
1− eαt

)}
,

when the survival function is proper.

Let (ti,xi, δi) be n the observed times, δi is an indicator variable and x′i is a
covariates vector, i = 1, . . . , n. The likelihood function for right-censored data is
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given by

L (α,β|t,x, δ) =

n∏
i=1

[exp (αti + x′iβ)]
δi exp

{
ex

′
iβ

α

(
1− eαti

)}
. (12)

The maximum likelihood estimators (MLEs) are obtained by direct
maximization of equation (12) or through the log-likelihood function. The
asymptotic confidence intervals are obtained assuming asymptotic normality of the
MLEs.

4 Gompertz regression model with gamma frailty

Considering the frailty model given in (1) and the equation (9), the HF of the
ith individual with the multiplicative frailty term vi(vi > 0) is given by,

hi(t|α,β, vi) = vi exp(αt+ x′iβ), (13)

interpreted as the conditional hazard function of the ith individual given vi and the
respective conditional SF is given by

Si(t|α,β, vi) = exp

{
−e

x′
iβ(eαt − 1)vi

α

}
, i = 1, . . . , n. (14)

In models with multiplicative frailty, we are considering that different
individuals have different frailties. Then, the individuals who present the highest
values of variable vi tend to die earlier than the individuals who present the lowest
values of the same variable.

The frailty model not only explains the heterogeneity among individuals, but
it also allows to assess the covariates effect that for some reason were not considered
at the fitting.

The value v is not observed, which is why we assume that v is an observation
of the random variable V with a given probability density function. In the literature
the gamma, lognormal, Weibull and inverse Gaussian distributions are the most used
(HOUGAARD, 1995). In this paper we considered that V has a gamma distribution
with parameters τ > 0 and η > 0, G(τ, η), with density function written as

fV (v; τ, η) =
ητ

Γ(τ)
v(τ−1) exp (−vη). (15)

Considering univariate times, if we built the likelihood function using the
hazard and survival functions given in (13) and (14), respectively, we would
have more parameters than observations, so we need to calculate the hazard and
unconditional survival functions. In the context of proportional hazard, according
to Elbers and Ridder (1982), when working with frailty it is necessary that the
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random effect distribution has finite mean for the model to be identifiable. This
way, in order to keep the identifiability of the model it is convenient to take the
distribution with mean 1.

Thus, we assume the gamma distribution given in (15) with parameter τ=1/θ
and η=1/θ, where E(V )=1 and Var(V )=θ.

To get the unconditional SF we need to calculate

S(t) =

∫ ∞
0

S(t|α,β, v)f(v)dv,

where f(v) is the PDF in (15). In order to calculate the unconditional SF we use
the Laplace transform since both have the same shape. The Laplace transform
of the gamma distribution (15) with parameters (1/θ, 1/θ) (WIENKE, 2011) and
considering s a real argument, is given by

Q(s) = (1 + θs)−1/θ. (16)

Substituting s = H(t) in the equation (16), we obtain the unconditional SF,
given by

S(t|α,β, θ) =

[
1 +

θ

α
ex

′β
(
eαt − 1

)]−1/θ
. (17)

The behavior of the SF is determined by the value α. For α > 0 the survival
function is proper and for α < 0 it is improper, then we have a long duration model
with the cure rate, p, given by

p =

(
1− θ

α
ex

′β

)−1/θ
.

From equation (17) we get the correspondent hazard function, given by

h(t|α,β, θ) =
eαt+x

′β

1 + θ
αe
x′β (eαt − 1)

. (18)

In this case we have hazard function of the G-G model that is an attractive
explanation for the widely observed pattern of decelerating increase in mortality
with age, in both humans and other species (e.g., VAUPEL et al., 1979).

Some examples of hazard (18) and survival (17) functions are shown in Figure
2.
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Figure 2 - Different forms of the hazard function (left) and survival function (right)
for the G-G model.

4.1 Inference

Let (ti,xi, δi) be n the observed times, δi is an indicator variable and x′i is
a covariates vector, i = 1, . . . , n. The likelihood function for right-censored data,
constructed from the equations (17) and (18), is given by

L(α,β, θ|t,x, δ) =

n∏
i=1

[h(ti;α,β, θ)]
δi [S(ti;α,β, θ)]

=

n∏
i=1

[
eαti+x

′
iβ

1 + θ
αe
x′
iβ (eαti − 1)

]δi [
1 +

θ

α

[
ex

′
iβ
(
eαti − 1

)]]−1/θ
,

(19)

where t = (t1, . . . , tn), x′ = (x1, . . . ,xn) and δ = (δ1, . . . , δn) is arandom variable
censoring indicator. The log-likelihood function (from (19)) is given by

log(L(α,β, θ|t,x, δ)) = −
n∑
i=1

log

(
θ(eαti−1)ex

′
iβ

α + 1

)
θ

−
n∑
i=1

δi log

(
θ (eαti − 1) ex

′
iβ

α
+ 1

)
+

n∑
i=1

δi log
(
eαti+x

′
iβ
)
.

(20)

The MLEs are obtained by direct maximization of equation (19) or by
maximization of (20). In the case of uncensored times, the log of the likelihood
function and the first and second derivatives of the α, β and θ parameters are
shown in Appendix.

The asymptotic confidence intervals are obtained assuming asymptotic
normality of the maximum likelihood estimators. The comparison between the
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Gompertz regression model and Gompertz regression model with gamma frailty is
made by considering the Akaike information criterion (AIC) (AKAIKE, 1974) and
the Bayesian information criterion (BIC) (SCHWARZ, 1978). The lowest AIC and
BIC indicate the best fitted model to data.

5 Simulation study

In this work, the main concern of the simulation study is to assess the mean
absolute bias (MAB) and mean squared error (MSE) of the MLEs, as well as the
coverage probabilities of the asymptotic confidence intervals for the parameters of
the frailty model. We generated 5,000 samples for each sample size (n = 50, 100, 200
and 300). The parameters were fixed at α = 0.1, β0 = 1, β1 = −1.8 and θ = 0.5
and the dummy covariate was generated from a Bernoulli distribution with success
probability equal to 0.6. The choice of the parameters was made considering the
form of the risk function and for the α > 0 the survival function is proper. The
right-censored times were generated from an exponential distribution with mean
equals to 16.94 for 10% of censoring and 3.70 for 30% of censoring. The software R
(R Core Team, 2017) was used in the analysis.

For each sample we obtained the maximum likelihhod estimatives and the
asymptotic 95% confidence intervals. Using these values, we calculated MAB, MSE
and the coverage probability (CP). For example, for the parameter α there is

MAB(α) =

5000∑
j=1

|α∗ − α̂j |

5000
,

where α∗ is the true value of the parameter α and α̂j is the maximum likelihood
estimate of α in the jth sample,

MSE(α) =

5000∑
j=1

(α∗ − α̂j)2

4999
,

and CP is given by the quotient between the number of intervals containing the
true parameter value and the total number of intervals constructed. The MAB and
MSE are shown in the Table 1 and the CP in Figure 3.
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Table 1 - MAB and MSE of the MLEs for 0% / 10% / 30% of censoring
Size Censoring MAB MSE

α β0 β1 θ α β0 β1 θ
n=50 0 0.1669 0.3336 0.3913 0.4250 0.0585 0.1791 0.2508 0.3159

10 0.1973 0.3416 0.4186 0.4477 0.0743 0.1889 0.2829 0.3372
30 0.2863 0.3485 0.4645 0.4958 0.1428 0.1940 0.3443 0.3947

n=100 0 0.1126 0.2369 0.2744 0.2892 0.0264 0.0900 0.1221 0.1494
10 0.1346 0.2440 0.2948 0.3116 0.0365 0.0956 0.1434 0.1700
30 0.2108 0.2572 0.3369 0.3770 0.0833 0.1062 0.1843 0.2495

n=200 0 0.0736 0.1597 0.1916 0.1887 0.0097 0.0402 0.0577 0.0583
10 0.0877 0.1685 0.2036 0.2022 0.0139 0.0443 0.0661 0.0685
30 0.1389 0.1759 0.2299 0.2473 0.0343 0.0487 0.0847 0.1036

n=300 0 0.0576 0.1291 0.1518 0.1484 0.0056 0.0265 0.0370 0.0357
10 0.0703 0.1315 0.1631 0.1607 0.0084 0.0274 0.0421 0.0420
30 0.1101 0.1387 0.1850 0.1956 0.0207 0.0306 0.0539 0.0631
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Figure 3 - Coverage probability of the asymptotic 95% confidence intervals for α,
β0, β1 and θ.

We observed that both MAB and MSE metrics decrease with increasing sample
size, for the three scenarios of censoring. We also noted that when the amount of
censoring increases, the value of the metrics also increases. Comparing the values
of the metrics of the parameters β0 and β1 with the values of α and θ, we observed
that, the relative increase of the parameters that measure the effect of covariates is
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almost always smaller than the other parameters, when increasing the amount of
censoring present in the sample.

Regardless of the amount of censoring in the sample, the coverage probabilities
of parameters seem to converge to the nominal level. We observed that the
convergence of the coverage probability of the parameter θ seems to be slower than
the coverage probability of other parameters.

6 Lung cancer data

To illustrate the applicability of the proposed model, we adopted the dataset
of the annual incidence of lung cancer in Northern Ireland, between 01/01/1991 to
09/30/1992 (WILKINSON, 1995). In this period, 900 cases of lung cancer were
identified, however, we excluded all individuals with missing information on some
covariates from the analysis, resulting in 751 patients to have their lifetime analyzed
(in months).

We considered for the fitting only the categorical covariates the sodium level
(X1) with the categories < 136mmol/l and >=136mmol/l and, albumen level (X2),
with categories <35g/l and >=35g/l. We verified the assumption of proportional
hazards of these covariates using the graphical method presented in Colosimo and
Giolo (2006). The result of the method is shown in Figure 4 and it is possible to
note that both covariates show proportional hazard.
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Figure 4 - Proportional hazard assumption for the sodium level (left) and albumen
level (right) covariates.

We fitted the Gompertz regression and G-G models for the dataset, using the
possible combinations of the covariates (X1 only, X2 only, and, X1 with X2, Tables
4, 5 and 3). We adopted the criteria AIC and BIC to select which model best fitted
the data. The results are shown in Table 2. We observed that the model that best
fits the data in both criteria is the Gompertz regression model with gamma frailty
with the covariates X1 and X2 because the values of these criteria are the lowest in
these models. Comparing only the scenarios with the same covariates adopted, the
model with frailty (G-G) is preferred in all the settings.
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Table 2 - Results of the criteria for the fitted models
Model AIC BIC
Gompertz with X1 only 3,570.68 3,584.55
G-G with X1 only 3,564.01 3,582.49
Gompertz with X2 only 3,519.90 3,533.76
G-G with X2 only 3,504.68 3,523.17
Gompertz with X1 and X2 3,503.77 3,522.25
G-G with X1 and X2 3,486.51 3,509.61

The maximum likelihood estimates and asymptotic 95% confidence intervals of
the Gompertz and G-G models, with covariates X1 and X2 are presented in Table 3.
We observed changes in the maximum likelihood estimates of the parameters that
measure the effect of time and of the covariates, for the models with and without
frailty. We also noted, that all parameters are significant, including the parameter
θ, which measures the heterogeneity of the individuals.

Table 3 - The results of the fit of the without and with frailties models
Model with frailty Model without frailty

Parameter MLE CI MLE CI
α 0.0674 ( 0.0046; 0.1303) -0.0436 (-0.0648; -0.0224)
β0 -0.7826 (-1.0630; -0.5022) -1.2114 (-1.3722; -1.0506)
β1 -0.5871 (-0.8581; -0.3160) -0.3718 (-0.5413; -0.2022)
β2 -1.1732 (-1.4821; -0.8643) -0.7277 (-0.8969; -0.5585)
θ 0.8946 ( 0.3972; 1.3919)

Table 4 - The results of the fit of the without and with frailties models with X1

only
Model with frailty Model without frailty

Parameter MLE CI MLE CI
α 0.0680 (-0.0286; 0.1645) -0.0535 (-0.0748; -0.0322)
β0 -1.2032 (-1.4779; -0.9284) -1.5157 (-1.6675; -1.3639)
β1 -0.9001 (-1.2286; -0.5716) -0.5397 (-0.7042; -0.3752)
θ 1.0843 (0.2443; 1.9243)
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Table 5 - The results of the fit of the without and with frailties models with X2

only
Model with frailty Model without frailty

Parameter MLE CI MLE CI
α 0.0643 (-0.0007; 0.1292) -0.0461 (-0.0673; -0.0250)
β0 -1.0481 (-1.2852; -0.8111) -1.3791 (-1.5241; -1.2341)
β2 -1.3093 (-1.6319; -0.9867) -0.8158 (-0.9799; -0.6517)
θ 0.9038 (0.3804; 1.4271)

We observed that in the fitted frailty model, there is a reduction of
heterogeneity present in the data. For example, in the various scenarios (Table 2)
when we fitted the frailty model with X1 only covariate (Table 4), we got θ = 1.08,
when we fitted the model without frailty with X2 only covariate, we got θ = 0.90
(Table 5), and when we used the two covariates with X1 and X2 in the frailty model,
we got θ = 0.89 (Table 3).

In Figure 5 we presented the survival functions estimated by Kaplan-Meier
(KME) (KAPLAN and MEIER, 1958) and the frailty model. We observed through
the graphics that both curves are close, indicating that the G-G model showed a
good fit for the data.
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Figure 5 - The survival functions estimated by Kaplan-Meier and G-G model in (a)
sodium level <136mmol/l and albumen level <35g/l, (b) sodium level
>=136mmol/l and albumen level <35g/l, (c) sodium level >=136mmol/l
and albumen level <35g/l and (d) sodium level >=136mmol/l and
albumen level >=35g/l.

7 Final comments

In this paper we have studied a model where the gamma distribution
is employed, in the Gompertz regression model, to describe the unobserved
heterogeneity. We have explicitly derived the unconditional hazard rate and the
survival functions using the Laplace transformation. To study this model, we
presented a simulation study and a real example on lung cancer, which is compared
to the modeling without frailty via selection criteria to determine which model best
fits the data. More specifically, in the simulation study we considered the presence
of frailties, as well as different percentage of censured data (0%, 10% and 30%) and
samples sizes (n = 50, 100, 200 and 300). The metrics used to compare the adjusted
values with real values are MAB and MSE, and we observed that when the censoring
percentage is fixed and the sample size is increased, measures decrease. In addition,
when n increased we observed that the estimates for parameters were very close
to the real values. This fact occurred in all the studied. We noted that for the
parameters α, β1 and β0, the CP is very close to the nominal for n greater than or
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equal to 200. However, for the parameter θ, the CP has only achieved this for n =
300, in all studied censoring levels. In the model with fragility, the simulation study
showed good properties of MLEs, giving which grants us confidence in stating that
the estimation of the effect of time and covariates is important and make it possible
to explain the data more accurately.

In case a lung cancer data, the use of the Gompertz regression model with
gamma fragility, explained the heterogeneity present in the data when there are
risks factors not observed. Using the criteria AIC and BIC, there is evidence in
favour of this model, when compared to model without frailty (Figure 5). That is,
the G-G model with sodium level (X1) and albumen level (X2) covariates fits better
the dataset. Also, the use of important covariates on modeling causes decreases in
heterogeneity, which is showed by parameter θ. It is important to note that in both
cases, simulation study and application, the G-G model best describes the behavior
of data and captures the fragility. Also, we focus on the α > 0 case, that is, the
survival function is proper. Future work may be performed for the case where the
survival function is improper, that is, in long-term models.
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RESUMO: Modelos de sobrevivência com fragilidade são usados quando alguma variável

não está dispońıvel para explicar o tempo de ocorrência de um evento de interesse.

Esta não disponibilidade pode ser considerada como um efeito aleatório relacionado a

covariáveis não observadas, ou que não podem ser medidas, como fatores ambientais

ou genéticos. Este artigo enfoca o modelo Gama-Gompertz (denotado por G-G),

que pertence a uma classe de modelos que investigam os efeitos da heterogeneidade

não observável. Assumimos que a taxa de mortalidade basal no modelo G-G é o

modelo de Gompertz, em que a mortalidade aumenta exponencialmente com a idade

e a fragilidade é uma caracteŕıstica fixa do indiv́ıduo e a distribuição da fragilidade é

uma distribuição gama. A metodologia proposta utiliza a transformada de Laplace para

encontrar a função de sobrevivência incondicional na fragilidade individual. A estimativa

é baseada em métodos de máxima verossimilhança e esta distribuição é comparada

com o seu caso particular. Um estudo de simulação examina o viés, erros quadráticos

médios e probabilidades de cobertura considerando vários tamanhos de amostras e dados

censurados. Um exemplo real com dados sobre câncer de pulmão ilustra a aplicabilidade

da metodologia, em que comparamos os modelos G-G e sem fragilidade através de

critérios que selecionam o modelo mais adequado aos dados.

PALAVRAS-CHAVE: Modelo Gama-Gompertz; risco proporcional; modelo de

sobrevivência.
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Appendix

In the case of uncensored lifetimes, the log of the likelihood function is given
by,

log(L(α,β, θ|t,x) = −
n∑
i=1

log

(
θ(eαti−1)ex

′
iβ

α + 1

)
θ

−
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(
θ (eαti − 1) ex

′
iβ

α
+ 1

)
+
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log
(
eαti+x

′
iβ
)
. (21)

From (21), the first derivatives to the θ, α and β parameters are given
respectively by,
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In the same way, from (21) we wrote the second derivatives to the θ, α and β
parameters are given respectively by,
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