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ABSTRACT: Population-based association studies with unrelated individuals have

been used in the mapping of genes involved in the regulation of complex diseases.

However, when subjects are from different ethnic ancestries, these studies may yield

spurious associations due to population stratification, with an excess of false positive

or negative results. Principal components analysis based either on genotype values

from known genetic markers (columns of the matrix) or on individuals (rows of the

matrix) are the most common approaches used for correction of the confounding

effect due the population stratification in genetic association studies. In this paper,

results from the singular value decomposition theory of matrices are used to show the

analytical equivalence between these approaches, focusing mainly in their relevant role

in population stratification analysis. It is also shown the importance of using the biplot

as a visualization tool not only to explain the joint information of samples and genetic

markers but also to detect informative markers. Although both procedures can be used

to correct for population stratification, principal components analysis based on samples

is more computationally feasible due to the large number of genetic markers (n << p

problem). As an application, it is used genotype data from four HapMap populations.
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1 Introduction

The mapping of human genes is an important step for personalized medicine
and other aspects of health care (Altshuler, 2008). In this context, one important
result of the Human Genome Project was the discovery of millions of DNA sequence
variants in the human genome. Since the majority of these variants is single
nucleotide polymorphisms (SNPs), such markers have received special attention
in recent years (Bush, 2012). High-dimensional SNPs platforms have been used
to represent the human genome make up to differentiate the phenotypes between
individuals and some SNPs have been directly associated to the genetic mechanism
of complex diseases in humans.

One issue in those studies of complex diseases is that population stratification
may yield spurious phenotype-genotype association due to the differences in SNP
allelic frequencies between populations. This leads to a confounding effect between
the SNP and the ancestry of the individuals. Thus several methods to detect and
correct for population stratification were proposed to control the excess of false
positive or negative rates (Tiwari et al., 2008).

In this article, the focus is on two alternative methodologies, one by Zhang
et al. (2003) and the other by Price et al. (2006), to estimate genetic background
variables as global ancestry coefficients. In the situation of having a matrix G of
dimension N ×M , where N and M are the numbers of individuals and of genetic
markers, Zhang et al. (2003) proposed the spectral decomposition of the M ×M
covariance matrix among markers (standard principal components based on the
variables/columns space), while Price et al. (2006) performed such decomposition
on the N × N covariance matrix among individuals (eigenanalysis based on the
individuals/rows space).

Several authors had also introduced methods to correct for population
stratification using either the M-columns or the N-rows of genetic matrix. For
instance, Bauchet et al. (2007) suggested the use of principal coordinates analysis
to summarize genetic marker data by operating on the rows. Chae and Warde
(2006) had also argued that principal coordinates analysis was more powerful than
principal component analysis to ensure identification of groups of individuals only if
some conditions were satisfied, while Zhu et al. (2008) applied principal component
analysis to adjust for the effect of population stratification, and suggested the
equivalence of the information obtained by these two methods due to the duality
of these techniques. Zheng et al. (2012) provided a simple proof showing that
eigenanalysis based on individuals and the standard principal component analysis
based on genetic variables were the same up to a constant. Furthermore, Ringnér
(2006) showed how principal component analysis could be used to explore high-
dimensional gene expression data set.

Many applications in multivariate analysis usually start on the rows and
columns of a rectangular data matrix. For example, Gower (1966) described
the duality of Q and R techniques, where the Q technique focused on a N × N
matrix, whose values were measures of association between the individuals, and
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the R technique focused on M ×M matrix, whose values defined the relationship
among the variables (markers). Furthermore, it also provided analytical discussion
of the Q and R techniques on the context of principal components, factor analysis,
and multidimensional scaling (or principal coordinate analysis). Gabriel (1971)
introduced the use of biplots as a graphical display of rows and columns of a
rectangular data matrix. Subsequently, the concept of biplots was extended to
different representations of individuals, variables, and their interaction in two
dimensions plots (Greenacre, 1984, Sajesh and Srinivasan, 2008). Ringnér (2006)
applied this graphic to visualize the interdependency between individuals and the
identification of clusters, with the assumption that there was an association between
individuals and markers.

Despite the rich literature using principal component analysis for correction of
population structure in genetic association studies, there is still room to formalize
and extend the equivalence between eigenanalysis based on the variables and
individuals space, mainly on the big data context under the n << p problem.
Then, the specific aims of this paper are, firstly to establish an analytical equivalence
between these two approaches using the theorem of singular-value decomposition in
large genomic data matrices, and secondly to explore the use of biplots to represent
and visualize the joint information of individuals and molecular markers.

The paper is organized as follows. The Methods section presents the analysis in
the spaces <M and <N with the methods proposed by Zhang et al (2003) and Price
et al. (2006) by emphasizing their analytical equivalence, and the characterization
of biplots. In the Results section is present our analysis performed on a sample of
unrelated individuals from the HapMap Project. The relevance of the analytical
equivalence is emphasized in the Discussion and Conclusions section.

2 Methods

2.1 Methodology for population stratification

Let G = {gij} be a matrix of dimension N × M , where gij represents the
genotypic value (0, 1 or 2 for aa, Aa and AA, respectively) of the i-th individual in
the j-th marker, i = 1, . . . , N and j = 1, . . . ,M . Let define the normalization,

xij =
1√
N

(
gij − ḡj
sj

)
, (1)

where ḡj is the arithmetic mean and sj is the standard deviation of variable j (j-th
marker). By defining XN×M = {xij} the matrix with the elements of GN×M after
the normalization described in equation (1), one can obtain two matrices. The first,
defined by ΣM×M , is the covariance among the M markers, and the second, ΨN×N ,
is the covariance among the N individuals.

Since the interpretation between rows and columns of a data matrix allows for
the representation of the distances between individuals as well as the covariances
between variables (markers), one can easily represent geometrically the N rows and

496 Rev. Bras. Biom., São Paulo, v.33, n.4, p.494-507, 2015



M columns of a matrix by points, where the set of points can be: a) the set of
N individuals in the M -dimensional space <M , or b) the set of M variables in the
N -dimensional space <N .

In the case where there are missing genetic markers, it is recommended
to remove the missing xij prior to the genotype normalization, and after the
normalization to replace the missing xij by the value zero (Patterson et al., 2006).

2.2 Analysis in the <M space

In the <M space (R technique) the main purpose is to evaluate the relationship
between individuals, where the distance between individuals i and i′ is defined as

d 2(i, i′) =

M∑
j=1

(xij − xi′j)2 =
1

N

M∑
j=1

(
gij − gi′j

sj

)2

, (2)

j = 1, ...,M and i, i′ = 1, ..., N .

The spectral decomposition of the matrix X′X, denoted by ΣM×M , can be
written as ΣM×M = VΛΣV′, where VM×M = (V1,V2, ...,VM ) is the set of
the M orthonormal eigenvectors and ΛΣ is the diagonal matrix of eigenvalues.
The principal components obtained from the spectral decomposition of the matrix
ΣM×M are the columns of the matrix T given by

T = XV, (3)

where the coordinates of theN individuals in the factorial axis Vk (k-th eigenvector)
are the N components of the vector Tk = XVk.

In order to find latent variables to correct for population stratification in
genetic association studies, Zhang et al. (2003) used the standard principal
components of the spectral decomposition of the covariance matrix ΣM×M between
markers given by equation (3). For instance, to obtain the k-th latent variable tik
(for each individual i), the eigenvector Vk associated with the k-th eigenvalue of
ΛΣ is used in the following equation,

tik = XiVk =

M∑
j=1

xijvjk,

where Xi is the row vector with the genotypic information of the M markers of
the i-th individual (row i of the matrix X). If the distance between individuals
i and i′ is small, it is expected that the values of tik and ti′k are similar. Under
Zhang et al.’s approach, the latent variable tik can be included as a covariate in the
semiparametric regression model to correct for population stratification in genetic
association studies.
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2.3 Analysis in the <N space

In the <N space (Q technique) the goal is to evaluate the relationship between
the variables (markers), where the Euclidean distance between two variables j and
j′ is given by,

d 2(j, j′) =

N∑
i=1

(xij − xij′ )
2

=
1

N

N∑
i=1

(
gij − ḡj
sj

− gij′ − ḡj′
sj′

)2

=
1

N

N∑
i=1

(
gij − ḡj
sj

)2

+
1

N

N∑
i=1

(
gij′ − ḡj′

sj′

)2

− 2
1

N

N∑
i=1

(
gij − ḡj
sj

gij′ − ḡj′
sj′

)
.

Thus, the distance between two variables depends on their correlation, d 2(j, j′) =
2(1 − rjj′), where rjj′ is the correlation coefficient between variables j and
j′. Therefore, the proximity between two variables can be explained by their
correlations. Strong positive correlation (rjj′ ≈ 1) means that the variables are
close, and strong negative correlation (rjj′ ≈ −1) indicates that they are distant.
Intermediate distances (rjj′ ≈ 0) correspond to independent variables.

To represent the variables, let us consider the decomposition of the covariance
matrix among the N individuals, ΨN×N , where Ψii′ is the covariance between rows
i and i′ of matrix X, or equivalently, the spectral decomposition of the matrix
XX′ given as ΨN×N = UΛΨU′, where UN×N = (U1,U2, ...,UN ) denotes the N
eigenvectors and ΛΨ contains on its diagonal the eigenvalues of Ψ. The elements
of Uk, uik, i = 1, . . . , N , are the ancestry of the individuals over the k-th axis of
variation (Price et al., 2006).

The principal coordinates obtained from the spectral decomposition of matrix
ΨN×N are the columns of the matrix F given by,

F = X′U, (4)

where the coordinates of M variables in the factorial axis Uk (k-th eigenvector) are
the M components of the vector Fk = X′Uk, and the coordinate fjk of the variable

j on axis k is given as fjk =
∑N

i=1 xijuik.
In genetic association studies, Price et al. (2006) proposed to correct for

population stratification using the ten most significant eigenvectors U (that contain
the ancestry of the individuals) as covariates in the regression model. This approach
simplifies the analysis because the eigenvectors are orthogonal and uncorrelated. If
the correlation between the variables j and j′ is small, the values of uik and uik′ are
expected to be similar. This approach is implemented in the EIGENSOFT package
(Price et al., 2006; Patterson et al., 2006).
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2.4 Analytical equivalence between the methodologies

The principal components analysis on a symmetric matrix M ×M and the
principal coordinates analysis on a matrix N ×N are considered dual to each other
when both lead to a set of points with the same inter-points distances as shown by
Gower (1966). Then, the goal of this section is to investigate this duality using the
singular-value decomposition of the rectangular array XN×M of rank N (Johnson
and Wichern, 2007).

The relationship between the vectors of the matrices UN×N and matrix
VM×M can be established by the relationship given by,

X = UΛ1/2V′, (5)

where the columns of UN×N and VM×M are the eigenvectors associated with the
nonzero eigenvalues of XX′ and X′X, respectively, and ΛN×N is the diagonal
matrix of the eigenvalues, also known as singular values of matrix X. By multiplying
both sides of the equation (5) by V, we obtain XV = UΛ1/2V′V. Since V′V is

equal to the identity matrix, then U = XVΛ−1/2, where (U1, . . . ,Uk, . . . ,UN ) is

equal to (XV1λ
−1/2
1 , . . . ,XVkλ

−1/2
k , . . . ,XVNλ

−1/2
N ).

It is important to know that the k-th column Uk of matrix UN×N contains
the ancestry information uik of each individual i, where uik is a linear combination
of the genotypic information of the M markers of the individual i (row i of X)
and the coordinates of each marker over the vector Vk standardized by the root
square of the eigenvalue λk. Then, the scores of ancestries can be interpreted as the
preponderance of the markers on the variability of the individuals, where

Uk = XVkλ
−1/2 = λ−1/2Tk, (6)

whereby

uik = XiVkλ
−1/2 = λ−1/2

M∑
j=1

xijvjk = λ−1/2tik.

Thus, the ancestries of individuals in the k-th axis can be obtained by the
scores of the k-th principal component and vice-versa, establishing the analytical
equivalence between the approaches proposed by Zhang et al. (2003) and Price
et al. (2006) to obtain latent variables to control for population stratification
in genetic association studies. Similarly, by multiplying both sides of equation
(5) by U′, we have U′X = U′UΛ1/2V′ and as U′U is equal to the identity

matrix, then U′X = Λ1/2V′ and therefore, (V1, . . . ,Vk, . . . ,VN ) is equal to

(X′U1λ
−1/2
1 , . . . ,X′Ukλ

−1/2
k , . . . ,X′UNλ

−1/2
N ).

Note that the k-th column Vk of matrix VM×N contains the coordinates vjk
for each marker j. In this case, vjk is the linear combination of column j of matrix
X, which has the genotypic information of the marker j of all N individuals, and
the vector Uk represents the ancestry of each individual standardized by the root
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square of the eigenvalue λk. Hence, the coordinates vjk can be interpreted as the
contribution of the N individuals to the variability among the markers.

By replacing Uk = XVkλ
−1/2 of equation (6) in equation (4), we have,

Fk = X′Uk = X′XVkλ
−1/2 = X′Tkλ

−1/2,

so that the coordinate of the variable j on the axis k is given by,

fjk =

N∑
i=1

xij
tik√
λk

= rjk,

where rjk is the correlation coefficient between the variable j and the main
component k. It is worth noticing that the above results were obtained directly
from the factor analysis approach.

As shown above, the vectors of matrix V are functions of the vectors of matrix
U and vice versa. Thus, this result is very useful to circumvent computational
problems arising from the decomposition of the matrix ΣM×M whose dimension can
be extremely large, especially in association studies with large number of molecular
markers (such as SNPs). Furthermore, from a matrix X, in which each row or
column vector represents a point in the <M or <N spaces, it was showed the
correspondence of axes (ie, tik is the coordinate of the individual i in the k-th axis
and fjk is the coordinate of the variable j in the k-th-axis). This correspondence is
the key concept for the study of biplots described in the next section.

2.5 Biplots

Biplots are commonly used to display a graphical joint representation of
the rows and columns of the matrix X. Therefore, it can be very useful to
perform a simultaneous analysis of the relationships among individuals and markers
(variables). It is based on the same principle of dimensionality reduction techniques
through the singular-value decomposition of the matrix X (equation 5). The
fundamental difference is that the goal is to reproduce the original data through
a joint representation of rows and columns (Gabriel, 1971). In the graphical
representation, biplots are usually plotted in two dimension (using two singular
vectors), where the individuals are represented by points and the variables (markers)
are displayed either as a vectors, linear axes or trajectories. Hence, the matrix
XN×M is approximated by

XN×M ≈ U(2)Λ
1/2
(2) V′(2) = (U(2)Λ

1/2−c/2
(2) )(Λc/2V′(2))

= GH′, (7)

where U(2) and V(2) indicates only two eigenvectors of the matrices U and V,

respectively, G = U(2) Λ
1/2−c/2
(2) and H′ = Λ

c/2
(2) V′(2) with c ∈ [0, 1]. Here G is the

representation of the N rows of the matrix X in a bi-dimensional space and H is
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the representation of the M columns of the matrix X in this same space. Values
most commonly used for c are 0, 1/2 and 1. When c = 1, the matrices G and H′

from equation (7) are written as

G = U(2) = {uij} and H′ = Λ
1/2
(2) V′(2)

and by equation (7), H′ = U′(2)X, where, from equation (4), H′ = U′(2)X = F′(2) =

{fjk}. Then, the matrix G contains the ancestries of N individuals associated with
the axes k = 1 and k = 2, and the matrix H contains the scores of M markers
associated with these same axes. The term principal coordinates is used to refer
to the singular vectors scaled by the singular values (for instance, matrix H with
c = 1, or matrix G with c = 0), while standard coordinates are the unscaled singular
vectors (Greenacre, 1984).

Finally, the biplot can be displayed in a bi-dimensional plane of the joint
representation of N points of individuals (U1λ

1/2−c/2×U2λ
1/2−c/2) and M points

corresponding to the molecular markers (V1λ
c/2 × V2λ

c/2). For c = 0, rows are
in principal coordinates and columns are in standard coordinates, called the form
biplot, which favors the display of the individuals; for c = 1, rows are in standard
coordinates and columns are in principal coordinates, called the covariance biplot,
which favors the display of the variables. When c = 1/2, the biplot favors the
display of interaction effect.

It is important to notice that the biplot is a principal component analysis,
in which information of the columns (markers) are added on the same graph in
which the rows (individuals) are represented. Since, in the biplots, individuals and
variables are represented on the same plot, it makes sense to evaluate associations
between individuals and variables (markers) as the preponderance of one variable
(marker) to explain an individual, or the contribution of individuals to the values
of a variable (marker). The variability explained by the biplot axes is similar to
the variability explained by the principal component analysis, where the axes are
obtained in the direction of greatest variability.

3 Results

As an application, it was used the genotyped data of M = 491 SNPs (molecular
markers) for N = 397 unrelated individuals from four populations of the HapMap
Project, Phase III, where 113 are Utah residents with ancestors from Northern and
Western Europe (CEU); 85 Chinese from Denver, Colorado (CHD); 86 Japanese
from Tokio, Japan, and 113 Yoruba from Nigeria (YRI) (HapMap, 2003). The
set of 491 SNPs consists of ancestry informative markers (AIMs), selected as the
markers with the highest loading scores associated with the ten first principal
components of the spectral decomposition of the covariance matrix between all the
common SNPs available for the eleven populations of the HapMap Project, Phase
III (http://hapmap.ncbi.nlm.nih.gov/).

For this data set, it was performed the decomposition in singular values and
vectors of the matrix X obtained after the normalization of the original data
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described in equation (1). Figure 1 displays the biplot using c = 1/2 with the 397
individuals and the 491 SNPs where individuals are represented by points (gray)
and SNPs are represented by vectors (black).

Figure 1 - Biplots display: (a) Biplot showing the 397 individuals (gray points) and
the 491 SNPs (black vectors); (b) Biplot showing the 397 individuals
divided into the four populations and the ten SNPs closest to the centroid
of each population (indicated as cross signals). The gray points represents
the European population (CEU), black and light gray points represents
the Chinese and Japanese populations (CHD, JPT) and dark gray points
represents the Yoruba population (YRI).
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In Figure 1(a) can be observed three clusters, one of Asian individuals
(CHD and JPT), another of African individuals (YRI) and the last of European
individuals (CEU). Figure 1(b) shows the ten SNPs closest of the centroid of each
cluster, indicating that these ten SNPs are those which mostly contribute to the
discrimination of the population.

Table 1 shows the distribution of the ten SNPs closest to the centroid of each
cluster, over the 22 chromosomes, as well as that one for the hundred SNPs closest to
the centroids. Specifically, the first column identify the chromosome, the following
four columns presents the frequency of the 10 SNPs nearest to the centroid of each
population (the 10 SNPs distributed in the 22 chromosomes) and, analogously, the
last four columns present the frequency of the 100 SNPs closest to the centroid.

Table 1 - Frequency distribution over the 22 autosomal chromosomes of
the 10 and 100 SNPs closest to the centroid of each population.

10 SNPs 100 SNPs

Chromosomes CEU CHD JPT YRI CEU CHD JPT YRI
1 2 10 8 8 9
2 2 1 1 1 10 8 9 12
3 1 1 9 9 9 7
4 2 2 1 9 11 12 6
5 1 4 6 5 6
6 6 5 5 4
7 1 0 3 3 3
8 1 2 2 3 6 9 9 11
9 2 1 1 1 5 4 4 4
10 8 7 7 8
11 1 1 6 2 3 3
12 4 4 3 3
13 1 3 2 2 3
14 3 4 4 0
15 1 1 1 3 4 3 2
16 4 1 1 3
17 1 2 2 0
18 1 1 2 3 3 4
19 2 1 1 4
20 1 3 1 1 5
21 0 1 1 1
22 1 1 2 5 5 2

Table 2 identifies such 10 SNPs closest to the centroids by their names. When
the 10 SNPs closest to the centroid are considered, the highest concentration of
them is observed in chromosome 8, while for 100 SNPs, highest concentrations are
observed in chromosomes 1, 2, 3, 4 and 8.
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Table 2 - Annotation of the ten SNPs closest to the centroid of each
population in the HapMap Project.

CEU CHD JPT YRI
1 rs10511625 rs12954302 rs7168890 rs10458360
2 rs4961736 rs7168890 rs12954302 rs41170
3 rs916204 rs6770520 rs6770520 rs12680859
4 rs4668082 rs349200 rs349200 rs355183
5 rs2403732 rs6722663 rs7864878 rs11787250
6 rs7522358 rs12235034 rs4373455 rs12618983
7 rs11237061 rs7864878 rs12235034 rs9599954
8 rs7266805 rs7695667 rs6722663 rs10993768
9 rs1543061 rs4256368 rs7695667 rs4871822

10 rs7365057 rs2354895 rs2354895 rs12577127

4 Discussion and conclusion

In this paper, was discussed the duality of Q and R techniques in the context
of the spectral decomposition of rectangular matrices using genomic data. The
proposal of this article was to show the issues related to spurious association
caused by population-stratification in genetic association studies, as well as the
computational difficulties and methodologies currently available in the analysis of
genomic data of high dimensionality in low-dimensionality (known as the n << p
problem).

In this context, it was highlighted two methodologies proposed by Zhang et al.
(2003) and Price et al. (2006) respectively to correct for population stratification. In
the analytical equivalence between them, it was possible to conclude that correction
for population-stratification in association studies can be done by either of these
two alternatives. The Price methodology has however the advantage to be more
computationally feasible when the dimension of the variables space (markers) is
much larger than the dimension of the individuals space, i.e. n << p.

In spite of such results being well known in the singular value decomposition
framework, the opportunity to further strengthen the analytical equivalences of
both methodologies allows to emphasize the different solutions for the ancestry
estimation. For instance, considering that the solution adopted by Price et
al. (2006) corresponds to the classical solution of factor analysis via principal
components, i.e., the scores of ancestry are eigenvectors coordinates standardized
by their corresponding eigenvalues, one can obtain more accurate coefficients of
ancestry imposing solutions of factor analysis via maximum likelihood methods.
Alternatively, since Price et al. (2006) ancestry coefficients are also standard
coordinates, i.e., unscaled singular vectors, there is still room to extend the ancestry
estimation to robust standardization of the matrix G. Following this rational, the
EIGENSOFT package (Patterson et al., 2006) estimates of the global ancestry scores
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using measures of information content, such as allele frequency differences or FST
statistics, to assign loadings for the molecular markers.

The duality between the row and column spaces of rectangular matrices was
also discussed in order to introduce biplots in the analysis of genomic data. This
graphic allows the representation of the ancestry scores of individuals and molecular
markers (as SNPs) in the same axes, i.e., their joint visualization. To illustrate the
usefulness of the biplot, genotype data from four populations of the HapMap Project
(CEU, CHD, JPT and YRI) were analyzed. The results allowed us to discriminate
SNPs associated with individuals from specific populations. Since it is of interest
to identify markers that are more informative, establishing such associations may
show relevant patterns on the distribution of SNPs in the worldwide populations.

Acknowledgments

This paper was partially supported by the National Council to Technological
and Scientific Development (CNPq) and Foundation for Research Support of the
State of São Paulo (FAPESP) (grant no 2012/000316-5).

DUARTE, N. E.; GIOLO, S. R.; de ANDRADE, M.; SOLER, J. M. P. Sobre a
equivalência de métodos para populações estratificadas e sua aplicação em estudos
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RESUMO: Estudos de associação em indiv́ıduos não relacionados têm sido comumente

usados no mapeamento de genes envolvidos na regulação de doenças complexas. No

entanto, quando os indiv́ıduos são de diferentes ancestralidades, estes estudos podem

produzir associações espúrias devido à estratificação da população, resultando em excesso

de resultados falsos positivos ou negativos. A análise de componentes principais da

matriz de genótipos realizada com base nos marcadores genéticos (colunas da matriz) ou

nos indiv́ıduos (linhas da matriz) são as abordagens mais comuns utilizadas para corrigir

a estratificação da população em estudos de associação genética. Neste artigo, resultados

da teoria de decomposição em valores singulares de matrizes são usados para demonstrar

a equivalência anaĺıtica entre estas duas abordagens e sua relevância para a correção de

estratificação genética de populações. Além disso, é mostrada a importância de usar

o biplot como uma ferramenta de visualização, que explica não somente a informação

conjunta de amostras e marcadores genéticos mas também para detectar marcadores

informativos. Embora ambos os procedimentos possam ser utilizados para corrigir para

a estratificação populacional, o cálculo com base nos indiv́ıduos é computacionalmente

mais recomendável para a análise de conjuntos de marcadores genéticos de alta dimensão

(problema n << p). Como aplicação são usados os dados genot́ıpicos de quatro

populações mundiais do Projeto HapMap.

PALAVRAS-CHAVE: Componentes principais; decomposição em valores singulares;

dualidade da matriz genética.
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