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 ABSTRACT: Random Matrix Theory (RMT) methods for threshold selection had only been 

applied in a very low number of studies aiming the construction of Gene Co-expression Networks 

(GCN) and several open questions remained, especially regarding the general applicability 

regardless the diverse data structure of gene expression data sets. Moreover, no clear methodology 

to follow at each step was available. Here, we show, that RMT methodology is, in fact, capable to 

differentiate Gaussian Orthogonal Ensemble (GOE) from Gaussian Diagonal Ensemble (GDE) 

structure for a great number of simulated data sets and that results are similar to those obtained 

with the reference method of clustering coefficient. 
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1 Introduction 

The cell is a system of multiple interacting entities with specific functions, whose 

intrinsic complexity can be studied under mathematical frameworks such as networks. Gene 

co-expression networks (GCNs) are a common representation of this complex system as 

they depict those pair of genes having similar expression profiles, and therefore, highlight 

those genes that might be functionally related to the same pathway or protein complex. In 

GCNs, nodes represent genes and significant co-expression relationships are represented by 

edges. They are constructed through two main steps. First, a similarity measure is assessed 

on the gene expression profiles of each pair of genes conducing to a gene by gene similarity 

matrix. Second, a similarity threshold is selected, above which the relationship is assumed 

to be significant. Once this threshold is applied, only genes with significant similarities will 

be kept for the network and it can be described as an adjacency matrix with zeros for all 

non-significant similarities. 

The step of choosing the threshold should be as objective and efficient as possible in 

order to reflect biological mechanisms eliminating noise. Concerning the threshold 

selection, several methodologies have been used and reviewed elsewhere (LÓPEZ-

KLEINE and LEAL, 2014). There are methodologies based on either some statistical 
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criteria (FREEMAN et al., 2007; CARTERS et al., 2004) or criteria regarding the nature of 

the final graph (GUPTA et al., 2006; ELO et al., 2007). Methods based on Random Matrix 

Theory (RMT) belong to this last group because they aim to detect the transition between a 

random network and a network with a systemic structure as is expected for a biological 

network (GUPTA et al., 2006). 

RMT was initially proposed to explain statistical properties of the nuclear spectrum. 

Predictions for different spectral conditions of complex systems, such as unordered systems 

or chaotic quantic systems, were obtained using this approach (SNAITH et al., 2003). From 

the beginning of the 20th century, different applications of RMT have been found in other 

sciences such as physics, engineering, finances, meteorology, etc. (SARIKA et al., 2007). 

RMT approaches for the threshold selection in complex networks are based on the 

characterization of the statistical distribution of the nearest neighbour spacing distribution 

(NNSD) of the eigenvalues of the adjacency matrix (CVETKOVIT et al., 1980; SARIKA 

et al., 2007) NNSD represents the probability of finding neighbour eigenvalues with any 

given spacing. This probability is expected to have certain probabilities, depending on the 

correlation structure underlying the eigenvalues. Therefore, given the nature of correlations, 

eigenvalues are able to differentiate random from non-random networks (i.e. systemic 

networks) (SARIKA et al., 2007). This property of RMT makes it useful for the study of 

biological networks, such as co-expression networks, which have a systemic structure 

(BARABASI and ALBERT, 1999; WATTS et al., 1998) and clearly differentiate from 

random networks (ERDOS and RENYI, 1960). Because the nature of the graph is selected 

in RMT, makes it a completely objective and effective methodology for threshold selection. 

Very few studies have applied methods based on RMT for threshold selection and 

open questions remain about its applicability (LÓPEZ-KLEINE and LEAL, 2014; LUO et 

al., 2007). Here, we revisit the method and prove its applicability on GCNs. We use 

simulations based on RMT theory of several datasets, constructing random and systemic 

graphs in order to proof that the methodology can be applied to a wide range of gene 

expression data structures. This allowed us to establish that the method is very sensitive to 

some steps of the RMT methodology, but not to data nature, as suggested before (LÓPEZ-

KLEINE and LEAL, 2014). The method is compared against a traditional method based on 

topological properties of the graph using simulated and real data sets. Scripts have been 

written in R language (R CORE TEAM, 2017) and are available under request. 

2 Materials and methods 

2.1 Structure of adjacency matrices in RMT 

An adjacency matrix is an N × N matrix with i rows and j columns in which N 

represents the number of nodes (genes) of the graph. In the most simple adjacency matrix, 

the connecting nodes are represented by Aij=1 and non-connecting ones by Aij=0. The 

connecting elements may also be indicated as Aij=ρij, where ρij is some similarity measure 

between nodes, for genes generally the Pearson correlation between gene expression 

profiles. 

A non-random graph is represented by an adjacency matrix with few highly connected 

nodes or hubs. These graphs are known in RMT as Gaussian Diagonal Ensemble (GDE) 

graphs, which’s structure can be assessed by a Poisson distribution of the NNSD of the 
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eigenvalues. GDEs are real, diagonal matrices with uncorrelated (independent) eigenvalues 

(SARIKA et al., 2007) These graphs generally represent real systems, such as biological 

graphs. 

On the other hand, a random graph in RTM is represented by a Gaussian Orthogonal 

Ensemble (GOE) distribution of NNSD of the eigenvalues, which are correlated (SARIKA 

et al., 2007). These graphs do generally not represent real systems such as a biological 

network, because every node is randomly connected to all other nodes. 

2.2 RMT Methodology for threshold selection 

RMT methods aim at differentiating between these two types of structures by 

analysing NNSD of the eigenvalues after a previous step called unfolding or transformation 

of eigenvalues. 

 

Unfolding of eigenvalues of the obtained matrices 

 

In order to find out the universal properties of the fluctuations of the eigenvalues {λi} 

associated to the network, spurious effects are removed using unfolding or transformation 

∈𝑖= 𝑁̅(𝜆𝑖) = ∫ 𝜌̅
𝜆

𝜆𝑚𝑖𝑛
(𝜆′)𝑑𝜆′, where 𝜌̅(𝜆′) is the eigenvalues density. The 

estimation of the function 𝜌̅(𝜆′) was achieved by the non-parametric kernel smoothing 

based on the empirical distribution of the eigenvalues. (See appendix, script C). 

 

Statistics associated to NNSD 

 

This step will define if the graph described by the adjacency matrix is GOE or GDE. 

Two main properties are considered: 1) global properties like spectral density or distribution 

of eigenvalues ρ(λ) and 2) Local properties, like fluctuations around ρ(λ). Fluctuations are 

more popular and studied through the NNSD of eigenvalues. They indicate the probability 

of finding neighbouring values, given a specific spacing and follow two distinct universal 

distributions depending on the underlying correlation structure (CVETKOVIC et al., 1980, 

SARIKA et al, 2007). Once eigenvalues are scaled as ∈i , spacings to the nearest neighbour 

are obtained as  𝑠(𝑖) =∈𝑖+1−∈𝑖; which, due to the previous scaling have a mean value 

of 1 in both, GDE and GOE systems. The distribution of the spacings P(s) will then be 

defined as the probability distribution of 𝑠(𝑖) (see appendix, script C). 

The goodness of fit to GOE or GDE was evaluated using a Kolmogorov-Smirnov test. 

The chosen threshold, test statistic and P-value were retained. 

 

Border effect on Statistics associated to NNSD 

 

We evaluated the border effect, eliminating a certain percentage of eigenvalue 

spacings at both ends: 1%, 5%, 10% and 20% of bordering spacings were eliminated before 

unfolding in order to test if the adjustment changes. 
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2.3 RMT Methodology for threshold selection 

With the aim of testing the RMT approach to establish the difference between random 

graphs and non-random graphs, 5000 simulations of each GOE and GDE matrices were 

generated, their eigenvalues unfolded and NNSD tested. In this section we describe, how 

data were simulated. For these simulations, statistics were applied in order to retrieve the 

expected NNSD. Nevertheless, no threshold was established. 

 

Simulation of random and non-random adjacency matrices 

 

If A is a Gaussian random matrix m×n, denoted by 𝐺𝛽(𝑚, 𝑛) then the density function 

of its elements is given by: 

𝑓(𝑎𝑖𝑗) =
1

(2𝜋)𝛽𝑚𝑛/2 𝑒𝑥𝑝 {−
1

2
‖𝐴‖𝐹

2 }, where ‖‖𝐴‖𝐹
2 is the Frobenius norm of matrix A. 

𝐺𝛽is orthogonally invariant (see appendix, script A). 

Adjacency matrices with uncorrelated eigenvalues can be considered as a random 

Poisson process (BERRY, 1981), which is obtained from an integral system that can be 

simulated by Gaussian diagonal random matrices (see appendix, script B). 

2.4 Actual data 

In order to evaluate all steps of the RMT method to select the threshold, real gene 

expression data available at NCBI (http:/www.ncbi.nlm.nih.gov/geo/), obtained on plants, 

were analysed. The data used was obtained comparing control conditions to presence of 

pathogens (platform accession numbers: GPL2025 for rice data set (6 samples and GPL198 

for the Arabidopsis data set (18 samples)). Data was processed using the Bioconductor 

package affy (GAUTIER et al., 2004). Additionally, filtering of non-informative genes was 

accomplished eliminating genes with no differential expression among treatments. Pearson 

correlation between all pairs of genes was used to obtain the similarity matrices for each 

data set. 

2.5 Reference method for threshold selection: Clustering coefficient 

Our results were compared against a method based on network topological properties 

(ELO et al., 2007) on the real data set. The method computes the network’s clustering 

coefficient at different thresholds, and find deviations from a randomized network with the 

same degree distribution. First, the clustering coefficient is computed at a given threshold 

(e.g., 𝜏𝑣= 0.01) by equation #1. Then, the expected value of the clustering coefficient under 

a random network model is calculated by using equation #2. The threshold is gradually 

increased to evaluate the difference between the network’s clustering coefficient and its 

randomized counterpart network. Such difference between clustering coefficients is 

expected to increase monotonically as long as noisy edges are removed from the network. 

This is a discrete optimization problem formulated by (ELO et al., 2007) in equation #3. 

 

𝐶(𝜏𝑣) =
1

𝐾
∑

2𝐷𝑖

𝑘𝑖(𝑘𝑖 − 1)
𝑘𝑖>1

                                                                   (1) 
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In equation (1), 𝐶(𝜏𝑣)  is the observed clustering coefficient in the network, 𝑘𝑖 denotes 

the number of neighbours of gene i or node degree; 𝐷𝑖 denotes the number of edges between 

the neighbors of gene i.  𝐾 is the number of genes with 𝑘𝑖 > 1. 

 

𝐶𝑟(𝜏𝑣) =
(𝑘𝑑

̅̅ ̅ − 𝑘̅)
2

𝑘̅3𝑁
                                                                       (2) 

 

In equation (2), 𝑁 denotes the number of connected nodes in the network, 𝑘̅ =
1

𝑁⁄ ∑ 𝑘𝑖
𝑁
𝑖=1 , and 𝑘𝑑

̅̅ ̅ = 1
𝑁⁄ ∑ 𝑘𝑖

2𝑁
𝑖=1 .  

The optimum similarity threshold 𝜏∗is determined by finding the minimum threshold 

𝜏𝑣 for which the difference between the clustering coefficients is maximum. Thus, 𝜏∗ is the 

first local maximum of the curve 𝐶(𝜏𝑣) − 𝐶𝑟(𝜏𝑣). 

 

𝜏∗ =
𝑚𝑖𝑛

𝑣
{𝜏𝑣: 𝐶(𝜏𝑣) − 𝐶𝑟(𝜏𝑣) > 𝐶(𝜏𝑣+1) − 𝐶𝑟(𝜏𝑣+1)}              (3) 

 

In equation (3), 𝜏∗ is the selected similarity threshold; 𝜏𝑣+1 = 𝜏𝑣 + 0.01 with 𝜏𝑣 ∈
[0.01, 0.99] 

3 Results and discussion 

No clear methodology to follow at each previously described step was available. Here, 

we show, that RMT methodology is in fact capable to differentiate GOE from GDE 

structure for a great number of simulated gene sets and that results are similar to those 

obtained with the reference method of clustering coefficient.  

RMT methods for threshold selection had only been applied in a very low number of 

studies aiming the construction of GCNs (ELO et al., 2007; LÓPEZ-KLEINE and LEAL, 

2014; LUO et al., 2007). Five thousand simulations of random (GOE) and non-random 

networks (GDE) were obtained. For each simulation, all steps of the RMT were undertaken. 

On real data, the clustering coefficient methodology was applied in order to compare.  

Figure 1 shows distribution of one of the simulations of each system in order to illustrate 

that the simulations conducted to the expected distributions. 
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Figure 1 - Histogram of the empirical distribution of NNSD of a simulated GOE matrix (a) and GDE-

Poisson matrix (b) to the expected theoretical distribution. 

 

P-values obtained after applying Kolmogorov-Smirnov test to all simulated data sets 

are shown in Figure 2. A change is observed when more than 10% of the bordering values 

are eliminated. Elimination of 1% seems to have a positive effect on P-values, increasing 

adjustment to the theoretical distributions slightly and is therefore encouraged. These test 

results indicate that, a similarity matrix conducting to a random graph or a non-random 

graph can be accurately be detected using RMT methodology (after scaling appropriately), 

and that the final goodness to fit test is reliable.  

 

 
Figure 2 - Boxplot of P-values obtained for the Kolmogorov-Smirnov goodness to fit test to the 

theoretical distribution of 5000 simulations of (a) GOE matrices and (b) GDE-Poisson 

matrices. P1,P2,P3,P4 are boxplots of the same P-values after eliminating 1%,5%,10% 

and 20% of bordering spacings respectively. 
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Figure 3 - Histogram of the empirical distribution of NNSD of real data sets of rice (a, b) and 

Arabidopsis (c, d) showing how the transition between GOE adjustment and GDE-

Poisson adjustment allows detecting the threshold.  

 

For the real data sets transitions from GOE to GDE adjustment were detected at τ = 

0.98 for rice and τ = 0.88 for Arabidopsis. Results for the rice data set are different and for 

the Arabidopsis data set are similar. This indicates that the transition between random and 

non-random systems is detected at a slightly different point with RMT methods, than with 

clustering coefficient, although thresholds are similar. Nevertheless, for this particular rice 

data set, only three new edges are added when the threshold is increased from 0.82 to 0.98 

and no edge is added when threshold is changed from 0.84 to 0.88 for the Arabidopsis data 

set. 

These results suggest that both methods conduct to similar results and are objective in 

selecting the correct threshold. Nevertheless, other statistical methods like proposed in 

(Velez et al, 2014) and elsewhere should be investigated and compared to the clustering 

coefficient and RMT. 
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BARACALDO, L.; LEAL, L.; LOPEZ-KLEINE, L. Seleção do limite com base na teoria da matriz 

aleatória para a rede de co-expressão genética. Rev. Bras. Biom. Lavras, v.36, n.2, p.376-384, 2018. 

RESUMO: Métodos baseados na Teoria da Matriz Aleatória (RMT) para seleção do limiar tem sido 

aplicados apenas em um pequeno número de estudos com o objetivo de construir redes de co-

expressão de genes (GCNs) e várias questões permaneceram abertas, especialmente no que se refere 

à aplicabilidade geral, independentemente da heterogeneidade da estrutura dos conjuntos de dados 

da expressão gênica. Além disso, não estava disponível nenhuma metodologia clara para ser seguida 

em cada etapa do processo. Neste artigo, mostramos que a metodologia RMT pode, de fato, 

diferenciar o GOE da estrutura GDE para um grande número de conjuntos de dados simulados, e os 

resultados são semelhantes aos obtidos com o método de referência do coeficiente de agrupamento. 

PALAVRAS-CHAVE: Matrizes de similaridade; seleção do limiar; teoria da matriz aleatória; redes 

de co-expressão de genes. 
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